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PURPOSE 
 
 
 This document contains a summary of the main findings from our full report entitled 
“Wind Power Forecasting: State-of-the-Art 2009” [1]. The aims of this document are to provide 
guidelines and a quick overview of the current state-of-the-art in wind power forecasting (WPF) 
and to point out lines of research in the future development of forecasting systems. 
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1  DEFINITIONS AND ABBREVIATIONS IN WIND POWER FORECASTING 
 
 
1.1  GENERAL DEFINITIONS 
 
We refer to the following entities and terms throughout the Quick Guide. 
 
CAISO: California Independent System Operator 
 
ERCOT: Electric Reliability Council of Texas 
 
Global Numerical Weather Prediction models: are the core of weather forecasting as they 
perform most of the data assimilation process and produce the initial and boundary conditions 
used by limited area models. 
 
ISO: Independent System Operator 
 
Limited area models (regional/mesoscale): developed within the research of mesoscale 
atmospheric processes (e.g., processes with horizontal scales between 1 and a few hundred 
kilometers [km]). This scale is relevant for many local weather phenomena, from sea breezes to 
mountain flows and thunderstorms. 
 
MISO: Midwest Independent System Operator 
 
NERC: North American Electric Reliability Corporation 
 
Numerical Weather Prediction (NWP): uses current weather conditions as input into 
mathematical models of the atmosphere to predict weather variables; the values used most often 
for wind power prediction are wind speed and direction. 
 
NYISO: New York Independent System Operator 
 
 measured power derived from averaging higher-resolution measurements (e.g., 15 minutes :࢑ି࢚ࡼ
[min.]), which can be instantaneous values or energy, depending on the acquisition system. 
 
 forecasted wind generation made at time instant t for a look-ahead time t+k. It is the :࢚|࢑ା࢚෡ࡼ
average power ࢚ࡼା࢚|࢑ that the wind farm is expected to generate during the considered period of 
time (e.g., one hour), if operating under an equivalent constant wind. 
 
Persistence model: a naive prediction model, which stipulates that the wind (or wind power) in 
the next time step will be the same as occurred in the present time step. 
 
PJM: Pennsylvania-Jersey-Maryland Interconnection 
 
Point or spot forecast: single value of the forecasted wind power generation. 
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Probabilistic forecasts: probability distribution of the forecasted wind power generation for 
every look-ahead time. 
 
RTO: Regional Transmission Organization 
 
Time horizon: indicates the total length of the forecasting period (e.g., 72 hours [hrs] ahead) in 
the future, with a specified time resolution. 
 
Time step: the time resolution of the forecasts is denoted by the time step. Usually, for horizons 
on the order of 24–72 hours, the time step is hourly. Intra-time step (e.g., intra-hourly) variations 
of power and their impact are not considered. 
 
Other acronyms and abbreviations are defined where they occur throughout the report. 
 
 Table 1-1 provides an overview of the time horizon classifications and the potential 
application of each classification in the operation and planning of power systems, as well as the 
usefulness for the generation companies. 
 
 
TABLE 1-1  Wind Power Forecasting Time Horizons 

Time Horizons Generation Companies 

 
Independent System 

Operator/Transmission System 
Operator 

 
Very-short–term 
(up to 9 hrs) 

 
Intraday market 
Real-time market 

 
Ancillary services management 
Unit Commitment 
Economic Dispatch 
Congestion management 
 

Short-term 
(up to 72 hrs) 

Day-ahead market 
Maintenance planning of wind farms 
Wind farm and storage device coordination 

Maintenance planning of network lines 
Congestion management 
Day-ahead reserve setting 
Unit Commitment and Economic 
Dispatch 
 

Medium-term 
(up to 7 days) 

Maintenance planning of wind farms 
Maintenance planning of conventional 
generation 
 

Maintenance planning of network lines 
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1.2  WIND POWER FORECASTING APPROACHES 
 
 The advanced wind power forecasting (WPF) methods are generally divided into two 
main groups: 
 

• Physical approach: consists of several submodels, which together deliver the 
translation from the NWP forecast at a certain grid point and model level, to 
power forecast at the considered site and at turbine hub height. Every 
submodel contains the mathematical description of the physical processes 
relevant to the translation. 

 
• Statistical approach: consists of emulating the relation between 

meteorological predictions, historical measurements, and generation output 
through statistical models whose parameters have to be estimated from data, 
without taking any physical phenomena into account. This extrapolation of 
NWP forecast to power will be referred to in this document as a “wind-to-
power (W2P)” model. 

 
 There are some WPF systems that combine the two approaches in order to join the 
advantages of both and thus improve the forecasts. The state-of-the-art nature of these models 
can be found in numerous publications, such as [1]–[7]. Figure 1-1 depicts the different 
approaches used for WPF. 
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FIGURE 1-1  Different Approaches to WPF 
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1.3  REGIONAL FORECASTING 
 
 Regional/upscaling forecast: to extrapolate the total wind-generated power from 
predictions carried out for a number of representative (or reference) wind farms, for which 
Numerical Weather Predictions (NWPs) and/or on-line measurements are made accessible by the 
forecasting system. 
 
 Table 1-2 reports the four approaches in regional (upscaling) forecast. 
 
 

TABLE 1-2  Regional Forecast Approaches 

 
Approaches 

 
Description 

Direct 

 
This approach links the generation and NWP data available 
from one or more reference wind farms to the regional 
generation. 
 

Cascaded 

This approach is divided into two stages: (1) the power of the 
reference wind farms is forecasted; (2) the sum is 
extrapolated to the total regional/national generation. 
 

Cluster or subregions 

This approach is divided into three stages: (1) the wind farms 
are aggregated into clusters; (2) a model is developed for 
each cluster; (3) the sum of the clusters’ generation forecasts 
provides the total generation for the region. 
 

Combined 
This approach is a combination of the aforementioned 
approaches. 
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2  LITERATURE OVERVIEW OF THE WIND POWER FORECASTING 
APPROACHES 

 
 
2.1  VERY-SHORT–TERM WIND POWER FORECASTING 
 
 The very-short–term forecasting approach consists of statistical models that are based on 
the time series approach and includes such models as the Kalman Filters, ARMA, ARX, and 
Box-Jenkins forecasting methods. These types of models only take as inputs past values from 
the forecasted variable (e.g., wind speed, wind generation). At the same time, they can also 
use other explanatory variables (e.g., wind direction, temperature), which can improve the 
forecast error. Since these methods are based solely on past production data, they only 
outperform the persistence model (reference model) for forecast horizons between  
3–6 hours. 
 
 These types of models can be divided in two groups: (1) one group forecasts the wind 
speed and converts to power through an empirical or manufacturer’s power curve; and (2) the 
second group forecasts wind generation directly, without a previous step in which the wind speed 
is forecasted. Table 2-1 reports the state-of-the-art techniques used in very-short–term WPF. 
 
 

TABLE 2-1  Research Models for Very-Short–Term WPF 

 
Wind Speed Forecasting Wind Power Forecasting 

 
Kalman Filter [8], [9] 

 
Fuzzy Time Series [17], [19] 

 
Grey Predictor [10] Self-exciting Threshold Autoregressive [20]–[22] 

 
Takagi-Sugeno [11]–[14] Smooth Transition Autoregressive [20]–[22] 

 
Discrete Hilbert Transform [15], [16] Markov-switching Autoregressive [20]–[22] 

 
Abductive Networks (GMDH) [18] Adaptive Fuzzy Logic Models [23], [24] 

 
 Adaptive Linear Models [23], [24] 

 
ARIMA time series models [25]–[35] 

 
Neural Networks [19], [36]–[41] 

 
Adaptive Neural Fuzzy Inference System [31], [42], [43] 
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2.2  SHORT-TERM WIND POWER FORECASTING USING NWP 
 
 The literature makes reference to several techniques, and their performance is evaluated 
in the context of the WPF problem. Generally, these techniques are used to convert the NWP 
forecasts to wind power: this is the so-called W2P model. Table 2-2 reports the state-of-the-art 
techniques used in short-term WPF. 
 
 

TABLE 2-2  Statistical and Computational Methods for Short-Term WPF 

 
Methods 

 
Neural Networks [44]–[50] 

Support Vector Machines [44], [45], [50] 
Regression Trees with Bagging [44] 

Random Forests [44], [50] 
Adaptive Neural Fuzzy System [51], [52] 

Mixture of Experts [45] 
Nearest Neighbor Search [45], [50] 

Autoregressive with Exogenous input (ARX) [35] 
Locally Recurrent Neural Networks [53], [54] 

Local Polynomial Regression [46], [55] 
Takagi-Sugeno Fuzzy Inference System [56] 

Fuzzy Neural Networks [57] 
Autoregressive with Exogenous Input and Multi-timescale Parameter (ARXM) [58] 

Bayesian Clustering by Dynamics (BCD) [59] 
 

 
 
 Table 2-3 summarizes the main conclusions of the short-term WPF. 
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TABLE 2-3  Main Conclusions of the Short-Term WPF 

Combining several statistical 
models for day-ahead forecasts 
to decrease the forecast error 
[44], [46]. 
 

Spatial and temporal information 
from a wide area improves a 
single wind farm forecast [60]. 

WPF error can be reduced by 
using optimization algorithms for 
feature selection and 
parameters setting [60]. 

A transfer coefficient method is 
proposed in [58] to downscale 
NWP forecasts, which only 
takes a few seconds with one 
computer. 

Sideratos et al. [61] and 
Fan et al. [59] reported the 
importance of dividing the 
dataset into several subsets and 
fitting a model to each subset. 
 

The authors of [62] showed that 
combining a few number of 
NWP forecasts can easily 
improve the forecast error. 

The main trend in learning 
algorithms is being adaptive in 
order to deal with data streams 
and non-stationary processes. 

The non-Gaussian error 
distributions have motivated 
research to find new cost 
functions (e.g., error entropy 
minimization) [47]. 

The authors of [63] studied the 
improvement in the initial 
performance by supplying a 
“theoretical” wind farm power 
curve calculated with Wind Atlas 
Analysis and Application 
Program or WAsP, particularly 
for new wind farms. 
 

The authors of [63] 
demonstrated that stability 
measures and mesoscale 
modeling can further improve 
the physical models. 

The use of Kalman Filters to 
remove systematic errors of 
NWP wind speed forecasts is 
valuable [64]. 

The performance of the models 
is strongly related to the terrain 
complexity of the wind farm [65], 
and the spatial resolution of the 
NWP forecasts was highly 
important for WPF. 
 

 
 
2.3  REGIONAL FORECASTING 
 
 As far as regional forecasting (or upscaling) is concerned, several publications studied 
the effects of the number and location of reference wind farms on the expected power 
output of a whole region, as well as its error. It is well documented in the literature that, by 
aggregating several wind farms over a wide area, weakly correlated forecast errors cancel out as 
a result of statistical effects. 
 
 Table 2-4 reports the main conclusions of the regional WPF. 
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TABLE 2-4  Main Conclusions of Regional Forecasting 

When aggregating several wind 
farms over a wide area, weakly 
correlated forecast errors cancel 
out due to statistical smoothing 
effects [66]. 
 

The magnitude of the forecast 
error strongly depends on the 
size of the region — the larger 
the region, the larger the error 
reduction [67]. 

Forecasting errors increase with 
increasing load factor because 
of increasingly atypical weather 
events and higher average wind 
speeds [68]. 

Siebert et al. [69] showed that 
increasing the number of wind 
farms initially decreases the 
error. However, after reaching a 
specific number of wind farms, 
the error started to increase. 
The additional information 
provided by an extra farm is 
outweighed by the additional 
noise added to the model’s 
input. 
 

Siebert et al. [69] stressed the 
importance of selection of 
reference wind farms. 

The forecast error depends on 
the location of reference wind 
farms, and an upscaling based 
on subregion shows good 
performance when the 
normalized capacities of 
reference wind farms in each 
subregion are almost the same. 

Gastón et al. [70] identified that 
there is a limit to the reduction 
of errors by wind farm 
aggregation. In fact, groups of 
more than three wind farms do 
not necessarily result in a 
significant reduction of the 
errors. 

Pinson et al. [71] concluded that 
the advanced models for time 
horizons of up to 15 hours gain 
more from the smoothing effect 
than persistence. For a time 
horizon between 1 and 5 hours, 
persistence is the only model 
benefiting from smoothing 
effects. 
 

There is no significant 
difference in performance 
between the modeling 
approaches (direct, cascade, 
etc.) [72]. 

Only a few, well-selected 
explanatory variables are 
necessary for regional forecast 
[72]. 

Siebert [72] found that the 
relation between single wind farm 
and regional generation is 
strongly linear. 

Siebert [72] identified the need 
to build adaptive regional 
forecasting models to deal with 
the non-stationary process. 
 

 
 
2.4  OPERATIONAL AND COMMERCIAL WIND POWER FORECASTING SYSTEMS 
 
 Table 2-5 provides an overview of all the commercial and operational WPF systems and 
their main features. 
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TABLE 2-5  Overview of Operational and Commercial WPF Systems (generally listed in order of 
appearance of the references cited) 

 
Model Developer Approach Key Features 

    
Prediktor [73] Risø, Denmark 

(http://www.prediktor.dk) 
Physical This model provides local 

refinement of the NWP forecasts; 
it generates wind power curve 
modeling, including wake effects. 
 

Previento [74] University Oldenburg/EMSYS, 
Germany (http://energymeteo.de) 

Hybrid The approach is similar to that 
used in Prediktor but with regional 
forecasting and uncertainty 
estimation. 
 

LocalPred/ 
RegioPred 
[75] 

CENER, Spain Hybrid This model performs regional 
forecasting; was developed 
especially for complex terrain 
(micro-scale modeling); and 
conducts very-short–term 
forecasting with ARMA models. 
 

WPPT [76] IMM.DTU/ENFOR, Denmark 
(http://www.enfor.eu) 

Statistical This model provides point and 
uncertainty forecasts for a single 
wind farm, for a group of wind 
farms, or for a wide region. It uses 
a time-adaptive process to cope 
with a non-stationary process, and 
it takes autocorrelation and diurnal 
variations into account. 
 

Zephyr [78] Risø and IMM.DTU, Denmark Hybrid This model is a combination of the 
WPPT and Prediktor models; each 
wind farm is assigned a forecast 
model assigned according to the 
available data. 
 

Casandra [78] University of Castilla-
La Mancha/Gamesa, Spain 

(http://www.casandraenergy.com) 

Physical This model features a statistical 
downloading method that corrects 
systematic errors on the 
mesoscale forecasts; employs 
multivariate regression to estimate 
the wind farm power curve; and 
features the automatic update of 
power curves. 
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TABLE 2-5  (Cont.) 

 
Model Developer Approach Key Features 

    
AWPPS [79] ARMINES, France 

(http://www.cenerg.cma. 
fr/prediction) 

Statistical This model features very-short–
term models based on the 
statistical time-series approach 
and short-term models based on 
fuzzy neural networks (NNs). It 
combines forecasts by an 
intelligent weighting of very-short 
and short-term forecasts. The 
upscaling prediction model is 
based on dynamic fuzzy neural 
networks, and it uses cascaded 
and cluster approaches with 
reference wind farms. It includes 
an uncertainty estimation of 
confidence intervals and an 
assessment of prediction risk 
indices based on weather stability. 
 

WPMS [80] ISET, Germany Statistical It calculates the current power for 
all wind farms by using the 
measurements of only a few wind 
farms (on-line monitoring); 
provides day-ahead and short-
term wind power forecasts for 
single wind farms, control areas, 
and subregions; and functions as 
a multi-NWP that combines the 
forecasts of three different NWP 
models from different providers or 
a multi-scheme ensemble weather 
forecast system (MSEPS) that 
uses the forecasts of different 
members of the ensemble. 
 

WEPROG [81] WEPROG, Germany 
(http://www.weprog.com) 

Hybrid There are two main models: a 
weather prediction system running 
every 6 hours and a power 
prediction system that uses on- 
and off-line supervisory control 
and data acquisition (SCADA) 
measurements. In the first model, 
a multi-scheme ensemble 
prediction limited-area NWP 
model produces 75 different 
forecasts (ensembles), which 
forecast uncertainty and improve 
forecast accuracy. 
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TABLE 2-5  (Cont.) 

 
Model Developer Approach Key Features 

    
Sipreólico [82] University Carlos III of Madrid, 

Spain 
Statistical The model was built to deal with 

different levels of available data; 
several adaptive statistical models 
are used in order to produce a 
final forecast using an adaptive 
combination of the alternative 
predictions. The two main features 
are: (1) the adaptability to 
changes in the operation of the 
wind farms or in the NWP 
prediction model; (2) easy and 
fast adaptability for different wind 
farms; no pre-calibration is 
required. 
 

GH Forecaster 
[83] 

Garrard Hassan, UK 
(http://www.garradhassan.com/) 

Statistical It uses multi-parameter statistical 
regression routines to transform 
global NWP with appropriate 
geographical resolution and site 
data (provided by SCADA 
systems and/or site 
measurements) into site-specific 
models; the site-specific models 
can be any user-defined 
transformation between NWP and 
the site. 
 

SOWIE Eurowind GmbH, Germany 
(http://www.eurowind-gmbh.de) 

Physical This model uses high-resolution, 
three-dimensional wind and 
temperature forecasts as inputs, 
together with a database of all 
German wind energy turbines; it 
provides uncertainty estimation 
and regional forecasting. 
 

EPREV [84] INESC Porto/INEGI/CEsA/ CGUL, 
Portugal 

Statistical EPREV combines autoregressive 
models for very-short–term 
forecasting with neural networks 
for short-term forecasting; each 
wind turbine is modeled 
individually, thus enabling the 
on/off plans of each wind turbine 
to be identified; the system 
provides uncertainty forecasts. 
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TABLE 2-5  (Cont.) 

 
Model Developer Approach Key Features 

    
AleaWind AleaSoft, Spain (http://www. 

aleasoft.com) 
Statistical The model is capable of providing 

national, regional, or single wind 
farm forecasts. It is based on 
AleaSoft’s exclusive forecasting 
model; the parameters of an NN 
with a SARIMA (or Seasonal 
Auto‐Regression Integrated 
Moving Average) structure are 
estimated on-line. 
 

Scirocco Aeolis Forecasting Services, 
Netherlands 
(http://www. 

windknowhow.com) 

Hybrid The wind power forecast is an 
output of a model chain with 
consecutive steps from physical 
and statistical procedures; the 
system adapts itself to local 
geographical circumstances and 
wind farm characteristics during 
the first months of operation. 
 

MeteoLógica MeteoLógica, Spain 
(http://www. 

meteologica.com) 

Physical The NWP forecasts are 
downscaled by an advanced 
statistical downscaling system that 
uses local meteorological 
measurements. 
 

eWind [86] AWS TrueWind Inc., USA 
(http://www.meteosimtruewind.com) 

Hybrid Instead of using a once-and-for-all 
parameterization for the local 
effects, such as that used in the 
Risø approach, this model runs 
the ForeWind NWP as a 
mesoscale model using boundary 
conditions from a regional weather 
model; several models are used 
with different initializations in order 
to create an ensemble of high-
resolution NWP prediction. The 
output from the ensemble, along 
with the meteorological data, is 
used to train statistical models to 
produce forecasts at the 
meteorological tower sites and 
correct systematic errors; an 
“ensemble compositing model” 
transforms the ensemble of 
forecasts into a single probabilistic 
or deterministic forecast. The 
model provides uncertainty 
forecast. 
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TABLE 2-5  (Cont.) 

 
Model Developer Approach Key Features 

    
WindLogics 
[87] 

WindLogics Inc., USA 
(http://www.windlogics.com) 

Statistical This model uses SVM to convert 
wind speed to generation, and it is 
retrained every month in order to 
include new generation and 
weather data; it uses an ensemble 
of the National Center for 
Environmental Prediction (NCEP) 
Rapid Update Cycle (RUC), North 
American Model (NAM), and the 
Global Forecast System (GFS). 
 

PowerSight 
[88] 

3TIER, USA 
(http://www.3tiergroup.com) 

Statistical It provides hourly forecasts for 
7 days and 84 hours ahead; the 
best of 6 different configurations 
of NWP models (WRF or MM5) is 
chosen to forecast the weather 
variables; the power forecast 
uncertainty is estimated by using 
quantile regression or conditional 
on power curve location; a 
weather forecast ensemble is 
employed by using a series of 
NWP simulations, each obtained 
from different initial conditions or 
NWP models. The system 
provides hourly forecasts for a 
time horizon of up to 10 hours for 
which historical day-ahead 
forecasts and weather variables of 
other sites are used. 
 

Precise 
Stream 

Precision Wind, USA 
(http://www.precisionwind.com/) 

Physical This model is based on meso-
microscale atmospheric models 
(computational fluid dynamics 
techniques). The main feature is 
the ability to capture a full 17 km 
of vertical model depth as well as 
hundreds of km in the horizontal 
direction. The model uses three 
grids with different levels of 
horizontal resolution to define a 
large area around the site. The 
training method is a post-
processing step that requires only 
three months’ worth of data. 
Uncertainty estimation is also 
provided in the form of maximum 
and minimum wind generation 
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TABLE 2-5  (Cont.) 

 
Model Developer Approach Key Features 

    

   
values that vary according to 
current and forecasted weather 
conditions. 
 

WEFS [85] AMI Environmental Inc., USA 
(http://www.amiace.com) 

Hybrid In order to account for the local 
topography and micro-scale 
effects, the NWP predictions of 
MM5 or WRF (Weather Research 
and Forecasting Model) are 
coupled with a Diagnostic Wind 
Model developed by AMI; an 
adaptive statistical model is used 
to account for the systematic 
errors without requiring long 
sampling time and extensive 
monitoring data. 
 

WindCast WSI, USA 
(http://www.wsi.com/) 

– WindCast provides hourly wind 
speed and power forecasts for 
single wind farms up to 
seven days ahead. The forecasts 
can be updated seven times a 
day. 
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3  FORECAST UNCERTAINTY  
 
 
3.1  UNCERTAINTY REPRESENTATION 
 
 Recent research has focused on associating uncertainty estimates to point forecasts, 
taking into account the form of probabilistic forecasts, risk indices, or scenarios of short-term 
wind power generation. 
 
Probabilistic forecasts [89]–[94]: consist of estimating the future uncertainty of wind power 
that can be expressed as a probability measure (e.g., quantile). 
 
Risk indices [95], [96]: provide comprehensive information on the expected level of forecast 
accuracy (the predictability of the atmospheric situation), an a priori warning on expected level 
of prediction error. 
 
Scenarios of generation [97]–[99]: provide information on the development of the prediction 
errors through the set of look-ahead times and can also model the spatial and spatial-temporal 
interdependence of forecast uncertainty. 
 
 Table 3-1 summarizes the different types of uncertainty representation in WPF. 
 
 
 

Table 3-1  Different Types of Uncertainty Representation 

 
Uncertainty Representation 

Probabilistic 

Quantiles 
Interval Forecasts 
Probability Mass Function 
Probability Density Function 

Risk Indices Meteo Risk Index 
Prediction Risk Index 

Scenarios of 
Generation 

Scenarios with temporal dependency 
Scenarios with spatial/temporal 
dependency 
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3.2  UNCERTAINTY ESTIMATION 
 
 The wind power forecast uncertainty can be estimated with three different inputs: 
(1) NWP point forecasts; (2) power output point forecasts obtained by subjecting the NWP point 
forecast to a W2P model; and (3) an ensemble of NWP forecasts. 
 
Ensemble of NWP forecasts: the main purpose is to try to assimilate the initial error and the 
forecast uncertainty by applying either the initial perturbation method or the multi-model 
method. 
 
 Table 3-2 summarizes the different approaches to estimating WPF uncertainty depending 
on the different inputs used. 
 
 
TABLE 3-2  Different Approaches for Uncertainty Estimation 

 
Approaches Description 

  

NWP point 
forecasts

Probabilistic 
model

Wind generation 
probabilistic 

forecasts  

In the NWP point forecast 
approach, either the NWP 
forecast error is used as input 
or the wind power uncertainty 
is directly computed from the 
NWP points forecast, 
e.g., local quantile regression, 
presented by Bremnes [91]. 

  

 

The power output point 
forecast approach consists 
of forecasting uncertainty 
based on the WPF errors and 
NWP point forecasts. The 
probabilistic model is placed 
after the model that produces 
wind power forecasts, 
e.g., adapted resampling 
presented by Pinson [94]. 

  

 

In the filtering approach, 
wind NWP ensembles are 
converted into power 
ensembles. For that, each 
ensemble member uses a 
single or different point 
forecasting model. It is also 
necessary to calibrate the 
power output ensembles with 
post-processing methods. 
This approach can be found 
in Nielsen et al. [77]. 
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TABLE 3-2  (Cont.) 

 
Approaches Description 

  

 

The dimension reduction 
approach consists of 
reducing the input 
dimensionality and then 
feeding the reduced inputs to 
a probabilistic model, 
e.g., principal component 
analysis algorithm used by 
Bremen et al. in [100]. The 
dimension can also be 
reduced to the ensemble 
mean and variance. 

  

NWP 
ensemble

Probabilistic 
model

Wind generation 
probabilistic 

forecasts  

The direct approach 
consists of feeding the wind 
ensemble NWPs directly into 
a probabilistic model; for 
example, Juban et al. in [89] 
described a quantile 
regression forest with a 
random input selection step. 
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4  WIND POWER FORECASTING AND ELECTRICITY MARKET OPERATIONS 
 
 
4.1  WIND POWER, FORECASTING, AND MARKET OPERATIONS IN  

U.S. MARKETS 
 
 Table 4-1 provides an overview of electricity market operations and the current status of 
wind power forecasting in five ISO/RTO markets — MISO, NYISO, PJM, ERCOT, and CAISO 
— in the United States as of May 2009.  
 
 
TABLE 4-1  Market Operation and Wind Power Forecasting in Five U.S. Electricity Markets 

 
 

MISO NYISO PJM ERCOT CAISO 
      
Peak load 109,157 MW 

(7/31/2006) 
33,939 MW 
(8/2/2006) 

144,644 MW  
(8/2/2006) 

62,339 MW 
(8/17/2006) 

50,270 MW 
(7/24/2006) 
 

Installed 
capacity 

Ca. 127,000 MW Ca. 39,000 MW Ca. 163,000 MW Ca. 71,000 MW Ca. 58,000 MW 
(including imports) 
 

Wind 
capacity  
(at end of 
2008) 
 

Ca. 4,000 MW Ca. 1,275 MW Ca. 2,050 MW Ca. 8,000 MW Ca. 2,500 MW 

Pricing and 
congestion 
management 
 

LMPa LMP LMP Zonal (LMP to be 
introduced) 

LMP 

Reserve 
requirements 

– Based on NERC 
standards. 

– Demand curve 
for reserves. 

– Zonal reserve 
requirements.  

– Demand can 
participate in all 
markets. 

– Requirements 
updated daily.  

– Published two 
days ahead. 

– Wind not directly 
considered. 

– Based on NERC 
standards. 

– Demand curve 
for reserves. 

– Zonal reserve 
requirements 
(three zones).  

– Demand can 
participate in all 
markets. 

– Requirements 
updated 
monthly. 

– Wind not directly 
considered. 

– Based on 
NERC 
standards. 

– Regulation: 
1% of peak 
load (hrs.  
5–24), 1% of 
valley load 
(hrs. 0–5). 

– Zonal reserve 
requirements.  

– Demand can 
participate in 
all markets. 

– Wind not 
directly 
considered. 

 

– Using own 
requirements, 
similar to 
NERC. 

– System-wide 
requirements. 

– Updated 
monthly. 

– Wind and 
forecast error 
considered for 
regulation and 
non-spinning. 

– Based on 
Western 
Electricity 
Coordinating 
Council criteria 
and NERC 
standards. 

– Regional 
requirements 
enforced (up to 
eight regions). 

– Published two 
days ahead.  

– Wind not directly 
considered. 
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TABLE 4-1  (Cont.) 

 
 

MISO NYISO PJM ERCOT CAISO 
      
DAa market Energy + 

regulation, 
spinning, 
supplemental 
reserves co-
optimized. 
 

Energy + 
regulation, 
spinning, 
supplemental 
reserves co-
optimized. 

Energy + 
supplemental 
reserves co-
optimized. 

No energy but 
regulation, 
spinning, 
supplemental, 
replacement 
reserves. 

Energy + 
regulation, 
spinning, 
supplemental 
reserves co-
optimized. 

RTa market Energy + 
regulation, 
spinning, 
supplemental 
reserves co-
optimized. 
 

Energy + 
regulation, 
spinning, 
supplemental 
reserves co-
optimized. 

Energy + 
regulation, 
spinning 
reserves co-
optimized. 

Energy balancing 
market. 

Energy + 
regulation, 
spinning, 
supplemental 
reserves co-
optimized. 

Market 
timeline 

DA offers due: 
11:00 a.m. 
DA results:  
4:00 p.m. 
Re-bidding due: 
5:00 p.m. 
RT offers due:  
OHa – 30 min. 
 

DA offers due:  
5:00 a.m. 
DA results:  
11:00 a.m. 
RT offers due:  
OH – 75 min. 

DA offers due:  
12:00 noon 
DA results:  
4:00 p.m. 
RT offers due:  
6:00 p.m. (DA) 

DA bids due 
(reserves): 
1:00 p.m./ 
4:00 p.m. 
DA results 
(reserves): 
1.30 p.m./ 
6:00 p.m. 
RT offers due:  
OH – 60 min. 

DA offers due:  
10:00 a.m. 
DA results:  
1:00 p.m. 
RT offers:  
OH – 75 min. 

RT dispatch 
frequency 
 

5 min. 5 min. 
 

5 min. 15 min. 5 min. 

Centralized 
unit 
commitment 
procedure? 

Yes. SCUC is 
used for DA, post-
DA, and intra-day, 
as needed.  

Yes. SCUC is 
used for DA and 
75-min. before RT 
(results 45 min. 
before RT). 

Yes. SCUC is 
used for DA, 
post-DA, and 
intra-day, as 
needed. 
 

No. Will be 
introduced with 
nodal market. 

Yes. SCUC is 
used for DA, HAa, 
and for RT 
operations.  

Wind 
forecasting 

In operation since 
2008:  
– 90+ nodes 

included. 
– Transmission 

outage 
coordination. 

– Wind impact tool 
for ramp event 
impact on 
flowgates. 

– Transmission 
security and 
peak load 
analysis. 

– Input to 
reliability UC. 

In operation since 
2008:  
– DA forecast 

twice daily 
(4:00 am, 
4:00 pm). 

– RT forecast 
every 15 min. 

– Reliability pass 
of DA SCUC. 

– Real-time 
commitment and 
dispatch. 

– Wind plants are 
required to 
provide 
meteorological 
data to NYISO. 

 

Forecasting 
system is being 
introduced in 
2009: 
– Four types of 

forecasts 
(short, 
medium, long, 
ramp). 

– Each wind 
farm is 
required to 
provide info 
from one 
meteorological 
tower. 

In operation 
since 2008: 
– Updated 

hourly. 
– 80% 

exceedance 
forecast used 
for DA 
planning.  

Introduced in 
2004:  
– Next hour, next 

day, extended. 
– Part of PIRP. 
– Used in HA 

market, as PIRP 
participants must 
bid forecast.  

– Wind plants are 
required to 
provide 
meteorological 
data to ISO. 
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TABLE 4-1  (Cont.) 

 
 

MISO NYISO PJM ERCOT CAISO 
      
Wind 
forecasting 
developments 

– Automated 
procedure for 
use in system 
operations.  

– Required 
participant 
provision of 
DA forecasts. 

– Wind plants are 
required to bid 
into RT markets 
(DA optional).  

– Bids included in 
RT dispatch to 
improve 
efficiency.  

– Penalties for 
exceeding base 
points. 

– Ramping alert 
system. 

– More/better data 
from plants. 

– Evaluating 
needs for 
operating 
reserves. 

 

Planned use: 
– Reliability 

assessment 
(DA and RT). 

– Unit 
commitment 
(DA and RT). 

– Ancillary 
services 
(regulation, 
contingency). 

– Rules for wind 
power plant 
bidding, 
dispatch, and 
control being 
introduced. 

– To be fully 
integrated in 
DA and RT 
operations in 
new nodal 
design to be 
introduced at 
the end of 
2010. 

– Improving data 
quality. 

– Improving 
forecast quality. 

– Will integrate 
forecast into new 
MRTU market 
design, including 
DA operations. 

Imbalance 
settlements 
for wind power 

Most wind 
settled at RT 
price. No 
deviation 
penalties.  

No penalties for 
deviation from 
schedule in RT 
(3,300 MW 
exempt from 
penalties). 

Wind usually 
settled at RT 
price. 

Settled at real-
time zonal 
energy price. No 
deviation 
penalties. 

Deviations netted 
over month at 
average price. No 
deviation penalty 
(PIRP). 
 

Sources [101], [109] [106], [107], [110], 
[111], [112] 

[101], [108], 
[113], [114]  

[101], [103], 
[104], [115], [116] 

[101], [102], [105], 
[117], [118]  

a DA = day-ahead, HA = hour-ahead, LMP = locational marginal price, MRTU = Market Redesign and Technology 
Update, OH = operating hour, PIRP = Participant Intermittent Resource Program, RT = real-time,  
SCUC = security-constrained unit commitment. 

 
 
4.2  AREAS FOR IMPROVEMENTS IN U.S. MARKETS – OVERVIEW 
 
 The need for wind power forecasting in power system operations is obviously dependent 
on the amount of wind power capacity in the system. However, given the rapid increase in wind 
power generation in many areas of the United States, it is quickly becoming important for 
ISOs/RTOs to efficiently utilize the information provided by advanced wind power forecasting 
models. The need to revise current operating procedures and integrate wind power forecasting 
into system operation has also been emphasized by NERC’s Integration of Variable Generation 
Task Force in a recent report [119]. In general, wind power forecasting can potentially provide 
important information to several of the main procedures involved in power system operations 
(Figure 4-1). The challenge is to efficiently integrate the information from wind power 
forecasting, including the uncertainty in the forecast, into the operational procedures from 
calcuation of reserve requirments, day-ahead commitment and scheduling, and intra-day 
reliability adjustments, all the way to real-time dispatch. 
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FIGURE 4-1  Role of Wind Power Forecasting in Power System Operations (timeline 
based on Midwest ISO) 

 
 
4.3  WIND POWER AND THE UNIT COMMITMENT PROBLEM 
 
 Integration of wind power has a broad impact on power system operations, ranging from 
short-term system operations to long-term planning. The traditional deterministic unit 
commitment and economic dispatch algorithms currently used in power system operations 
cannot capture the uncertainty from wind power. In the current unit commitment research on 
wind power integration [120]–[126], the stochastic unit commitment is discussed repeatedly, and 
it shows a promising generation scheduling alternative to the deterministic approach. The general 
idea behind the stochastic formulation is to use scenarios to model uncertainty in wind power 
output. A generalized stochastic unit commitment formulation is shown in Figure 4-2. The 
objective is to minimize the expected cost to supply the load. Because of the nonanticipatory 
constraints, the minimum-on and minimum-off time constraints and capacity limits are enforced 
for all of the scenarios to obtain a single unit commitment solution. In each scenario, other 
constraints (such as load balance, ramping up/down, and capacity limits) have to be satisfied. 
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Figure 4-2  Stochastic Security-Constrained Unit Commitment (SCUC) 
Formulation 

 
 
 Consistent scenario generation is a key to accurately representing the uncertainty and 
errors in wind power forecasting. A majority of the research so far assumes that the wind power 
forecasting errors are subject to a normal distribution; however, this may not be a good 
assumption. Another important aspect of stochastic unit commitment with wind is how an 
operational policy in terms of reserve requirements should be defined. These issues will be 
investigated further in this project.  
 
 
  

Objective function:  
Minimize (production cost + load curtailment cost) * 
probability of each scenario 

Subject to: 
For all the scenarios: 
Minimum-on and Minimum-off time constraints 
Startup and shutdown constraints 
  
For each scenario:  
Total thermal generation = load – curtailed load 
System reserve requirements             
Ramping up/down constraints 
Network constraints 
Capacity limits 
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