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1  INTRODUCTION 
 
 
 Many countries and regions are introducing policies aimed at reducing the environmental 
footprint from the energy sector and increasing the use of renewable energy. In the United States, 
a number of initiatives have been taken at the state level, from renewable portfolio standards 
(RPSs) and renewable energy certificates (RECs) [1], to regional greenhouse gas emission 
control schemes [2]. Within the U.S. Federal government, new energy and environmental 
policies and goals are also being crafted, and these are likely to increase the use of renewable 
energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 
targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), 
increase the amount of renewable energy to 20% of the energy supply, and reduce the overall 
energy consumption by 20% through energy efficiency [3].  
 
 With the current focus on energy and the environment, efficient integration of renewable 
energy into the electric power system is becoming increasingly important. In a recent report, the 
U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy 
provides 20% of the U.S. electricity demand in 2030 [4]. The report discusses a set of technical 
and economic challenges that have to be overcome for this scenario to unfold. In Europe, several 
countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of 
electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid 
growth in installed wind power capacity is expected to continue in the United States as well as in 
Europe [4],[5],[6],[7],[8].  
 
 A large-scale introduction of wind power causes a number of challenges for electricity 
market and power system operators who will have to deal with the variability and uncertainty in 
wind power generation when making their scheduling and dispatch decisions. Wind power 
forecasting (WPF) is frequently identified as an important tool to address the variability and 
uncertainty in wind power and to more efficiently operate power systems with large wind power 
penetrations [4],[5],[9],[10]. Moreover, in a market environment, the wind power contribution to 
the generation portofolio becomes important in determining the daily and hourly prices, as 
variations in the estimated wind power will influence the clearing prices for both energy and 
operating reserves.  
 
 With the increasing penetration of wind power, WPF is quickly becoming an important 
topic for the electric power industry. System operators (SOs), generating companies (GENCOs), 
and regulators all support efforts to develop better, more reliable and accurate forecasting 
models. Wind farm owners and operators also benefit from better wind power prediction to 
support competitive participation in electricity markets against more stable and dispatchable 
energy sources [11]. In general, WPF can be used for a number of purposes, such as: generation 
and transmission maintenance planning, determination of operating reserve requirements, unit 
commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and 
energy trading. 
 
 The objective of this report is to review and analyze state-of-the-art WPF models and 
their application to power systems operations. We first give a detailed description of the 
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methodologies underlying state-of-the-art WPF models. We then look at how WPF can be 
integrated into power system operations, with specific focus on the unit commitment problem. 
The report includes: 
 

• A review of Numerical Weather Prediction systems (meteorological systems 
for weather predictions) and a description of how their characteristics (spatial 
and temporal resolution) may affect the performance of the WPF models; 

 
• A general presentation of WPF approaches; 

 
• A detailed literature overview of various theoretical WPF approaches. A 

description of some exemplary mathematical models is also provided; 
 

• A review of commercial and operational WPF tools; 
 

• A review of existing benchmarking results and an overview of the main 
conclusions; 

 
• A review of approaches on estimating uncertainty, as well as on uncertainty 

representation; 
 

• Synthesis of end-user requirements for forecasting tools, including 
input/output data, user interfaces, etc.;  

 
• A review of how wind power is currently handled in power system and 

electricity market operations, with focus on the electricity markets in the 
United States; 

 
• A review of current and proposed approaches for including WPF into the 

centralized unit commitment problem; 
 

• A set of alternative proposals for representing wind power and its uncertainty 
in unit commitment formulations; and 

 
• Recommendations for how to improve WPF and its use in power system 

operations. 
 
 The review presented in this report builds partly on experiences with WPF in Europe, 
where research on WPF methods has been carried out over a long period of time. For instance, in 
1993 ARMINES (Association pour la Recherche et le Développement des Méthodes et 
Processus Industriels) and Rutherford Appleton Laboratory developed a model for short-term 
wind power forecasting. Since then, several projects co-funded by the European Commission and 
other national projects have been developed. Some examples are: MORE-CARE [12],  
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ANEMOS [13], POW’WOW,1 WILMAR,2 and ANEMOS.plus.3 WPF has also received 
increasing attention within the United States over the last few years, following the rapid increase 
in installed wind power capacity. A number of U.S. companies and research institutions are 
currently contributing to the development of better WPF tools. 
 
 Presently, the aim both in the United States and Europe is to improve the WPF systems’ 
performance and to achieve a better integration of WPF in operational management tools. The 
reviews, assessments, and recommendations in this report can contribute to these efforts. 
Improved WPF can, in turn, facilitate a more efficient and larger introduction of wind power and 
other renewable energy sources in the electric power system. 
 
  

                                                 
1 http://powwow.risoe.dk/. 
2 http://www.wilmar.risoe.dk/index.htm. 
3 http://anemosplus.cma.fr/. 
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2  NUMERICAL WEATHER PREDICTIONS  
 
 
2.1  NUMERICAL WEATHER PREDICTION MODELS 
 
 Numerical Weather Prediction (NWP) models have been in place since 1950 after the 
pioneering work of Charney, Fjortoft, and von Neumann [14], who used a highly filtered, low-
resolution version of the dynamical equations. Early NWP models relied on quasi-geostrophic 
theories in order to establish consistent low-resolution models, which, by design, lacked many 
relevant physical processes that were impossible to include either because of insufficient 
knowledge or computer resources. Quasi-geostrophic models were dominant in the 1950s and 
1960s, when they were used mostly for hemispheric short-range forecasts (i.e., up to 3 days 
ahead) and for process studies. 
 
 Those early NWP models focused on synoptic-scale processes, namely on the evolution 
of mid-latitude weather systems, characterized by horizontal scales on the order of hundreds of 
kilometers, time scales on the order of numbers of days, and deep tropospheric structures. 
Verification of the forecasts was mainly done, and, to a certain extent, still is, as a function of the 
quality of mid-tropospheric fields (e.g., the 500- hectopascal [hPa] geopotential) or by an 
analysis of the evolution of the main weather systems (e.g., mid-latitude, near-surface storm 
trajectories). Because these models neglected many external forcing processes, such as the 
evolution of surface temperature and many important atmospheric processes (namely, radiation 
and phase transitions), they had limited predictive capabilities. On the other hand, those models 
already included some hints of what would constitute a modern meteorological model: a data 
assimilation system to define the model’s initial state, a discretized system of equations written 
in spherical coordinates, and an implicit representation of surface topography - a so-called 
sigma-coordinate approach after Phillips (1957) [15], which was a pioneering representation of 
subgrid-scale turbulence initially developed at the U.S. Weather Bureau by J. Smagorinsky 
(1958) [16].   
 
 As early as 1955, Charney [17] advocated the use of a more accurate set of equations, the 
so-called “primitive equations.” This set was a version of the equations of the atmospheric 
dynamics with a major built-in approximation: the vertical momentum equation was replaced by 
the hydrostatic condition. The use of the word “primitive” to characterize the set of equations 
implies that it was considered, at the time, that nonhydrostatic processes had little meteorological 
relevance. Primitive equation models were widely used in the 1960s by the scientific community, 
despite having fully entered the weather forecast business only by the late 1970s.  
 
 During the 1970s, as the primitive equations set became mainstream, atmospheric models 
became global, and a number of relevant processes were progressively added to those models. 
Maybe as a tribute to the history of model development, an NWP model is usually characterized 
as a set of three main components: the “dynamical” core, dealing with the basic set of equations 
of the adiabatic inviscid flow; the “physics” pack, which includes a variable number of equations 
representing processes such as radiation, phase transitions, convection, or turbulence; and the 
data assimilation code. 
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 The global primitive equation models still constitute the core of the weather forecast 
process. In the last three decades, those models evolved significantly towards higher resolution, 
more accurate physically based  parameterizations, and better data assimilation systems, keeping 
pace with scientific advancements, progress in the observation systems (namely, with the new 
remote sensing platforms), and computer technology. At the same time, the forecast range was 
extended to more than one week, and new statistical techniques were incorporated into the 
forecast process to deal with data and model uncertainty.   
 
 In spite of the continuous progress in weather forecast, there is a clear understanding that 
there are limits to the predictability of atmospheric flow. Working on results from NWP and 
from simpler nonlinear models, Lorenz (1963, 1969) [18],[19], the founding father of the theory 
of chaos, found that very small differences in the initial state tend to grow in time, leading to 
qualitatively different forecasts in a couple of weeks. Because there is a limit to the accuracy of 
the initial state, this means that, even with a perfect model, there is an upper range limit to the 
usefulness of forecasts.  
 
 Weather forecast is a mixed initial and boundary value problem. In a global model, the 
initial three-dimensional (3-D) atmospheric state, generally referred to as the “analysis,” is 
computed from observations. However, as observations are sparse and have errors, the NWP data 
assimilation codes evolved into very sophisticated data processors that try to obtain the “best” 
possible estimate of the initial state from a diverse set of possibly conflicting observations, 
including from radiosondes, surface stations, aircraft, satellites, etc.  
 
 Models also need boundary conditions, defining the evolution of model variables in the 
limits of the domain. In the case of global models, boundary conditions are needed at the surface 
(ocean and land) and at the top of the domain for the full time range of the forecast. In the case of 
limited area models, time-evolving boundary conditions are also needed at the lateral boundaries. 
 
 Because the land surface properties experience a very strong diurnal cycle, all 
meteorological models include a specific model to compute the evolution of the topsoil 
properties (namely temperature and water). Usually, however, NWP models do not yet include 
an ocean model, and the sea surface temperature is generally prescribed from climatology. Some 
models are beginning to include a representation of inland water bodies, which may have 
significant diurnal cycles. While seasonal snow is computed by the land surface models, 
“permanent” land ice and ocean-floating ice are generally prescribed from climatology. Because 
of their relevance for climate modeling, research is ongoing on each of these processes. 
 
 
2.1.1  Global Models and Medium-Range Forecasts 
 
 Global NWP models are the core of weather forecasting as they carry out most of the data 
assimilation process and produce the initial and boundary conditions used by limited area 
models. In recent years, those NWP models also became the main source of climatology data 
through the release of global 3-D gridded re-analyses by the National Center for Environmental 
Prediction (NCEP) (Kalnay et al.) [20] and the European Centre for Medium-Range Weather 
Forecasts (ECMWF) (Uppala et al.) [21]. Re-analyses datasets consist of the result of the NWP 
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data assimilation system produced by a fixed model, while the operational analyses are produced 
by different model versions because the models are frequently updated. Because of that, it is 
generally accepted that the re-analyses are the best available 3-D view of the Earth’s atmosphere. 
 
 

2.1.1.1  Data Assimilation for Model Initialization and Validation 
 
 Every atmospheric model requires some kind of data assimilation to establish its initial 
state. In modern global models, data assimilation constitutes one of the main assets of the model, 
as errors in the initial state are generally recognized as the major source of model uncertainty. 
Considering the huge amount of data available for assimilation, including data from radiosondes, 
surface stations, commercial aircraft, and multiple satellite platforms, it is only feasible to run the 
data assimilation processes in major meteorological centers, with privileged access to the World 
Meteorological Organization (WMO) data distribution channels and resources to deal with the 
data flow in real time. 
 
 Old NWP systems used simple data assimilation algorithms, which interpolated 
observations to the model grid, while imposing some filters and constraints on the balance 
between the different fields, designed to reduce the noise in the initial state. Modern data 
assimilation codes — for example, 3D-VAR and 4D-VAR methods (Lewis and Derber [22], 
Le Dimet and Talagrand [23], Courtier et al. [24]) — use a variational approach to optimize the 
initial state, often assimilating observations along a time window. This approach is highly 
appropriate for the modern remote sensing observations, which are not only global but are also 
frequently updated (e.g., up to every 15 minutes for geosynchronous imagery). Constraints 
imposed by modern data assimilation systems incorporate the physical balances included in the 
model equations, since the variational method uses the model forecasts as a first guess for the 
initial state. 
 
 The radiosonde network has been, for many decades, the backbone of atmospheric 
monitoring, providing the only direct observations of the atmosphere’s 3-D state. Together with 
a much denser network of surface stations, they constitute the synoptic network, making 
worldwide synchronous observations at prescribed times. However, the synoptic network is very 
heterogeneous in space, with large areas virtually unobserved over the oceans and in less affluent 
countries. Because of this circumstance, the relevance of nonsynoptic data in the data 
assimilation process has grown steadily, mainly through the assimilation of more satellite 
observations, which became the main source of data. While most of these data products are large 
scale (i.e., they are being assimilated in the initialization process of global models), there are still 
many potential data sources for smaller-scale models, including radar images, lighting retrievals, 
etc., that may be soon relevant for regional NWP. 
 
 

2.1.1.2  Model Formulation 
 
 Most global NWP models, with the notable exception of the UK Met Office model, use 
the spectral discretization method on the sphere, representing the atmospheric fields as a sum of 
spherical harmonics. The number of terms retained in that sum defines the order of truncation, 
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which is directly related to the model’s spatial resolution, as was mentioned before in relation to 
the NCEP and ECMWF models. However, because many of the model’s processes are computed 
in the physical and not in the spectral domain, the model computes forward and backward, 
transforming every time step.  
 
 Most global models use a pressure-based vertical coordinate in a terrain-following sigma 
system following Phillips (1957) [15], thus enabling a simple and accurate implementation of the 
surface boundary condition for the wind vector. The use of pressure to define the vertical 
coordinate simplifies the thermodynamic calculations and has a strong tradition in 
meteorological modeling. The approximation comes naturally in hydrostatic (primitive equation) 
models, but it is also feasible in nonhydrostatic codes (Rõõm et al. [25], Skamarock et al. [26]). 
 
 Global, primitive equation models integrate prognostic equations for the horizontal wind 
components, for surface pressure, for one thermodynamic variable (temperature or potential 
temperature), and at least for water vapor, besides also integrating other water reservoirs 
(e.g., cloud water, ice, etc.) on occasion. Other variables are computed from diagnostic relations. 
The vertical velocity, for example, which cannot be directly predicted in a hydrostatic model, 
may be computed by the integration of the continuity equation.  
 
 Models differ substantially in the numerical methods used. The (nonlinear) advection 
terms in the different prognostic equations are not adequate for computation in the spectral 
domain, and they are solved in the physical space, where the models may use different finite 
difference schemes or a semi-lagrangian approach. As horizontal advection is often the 
dynamical process that puts a limit to the model time step and is always a dominant process in 
the atmosphere, this component of the model code may have a strong impact on its overall 
performance.  
 
 

2.1.1.3  Physical Packages  
 
 The physical pack of a global model includes the representation of a number of processes 
that are not explicitly represented by the prognostic equations because of the model resolution. 
At the same time, it includes the computation of some “source” terms in the prognostic 
equations. The contents of the model “physics” may vary substantially, and some research 
models may include different alternatives for each process. 
 
 Processes considered for parameterization in global models include: (subgrid-scale) 
turbulence; convection, often composed of shallow and deep convection schemes; clouds and 
precipitation; radiation; and gravity wave drag. Turbulence and shallow convection schemes 
represent boundary layer processes, with a strong impact on the low-level flow. However, when 
present, the other processes may also lead to important changes in that flow. The surface model, 
which is technically an independent coupled model, also has important impacts in low-level 
variables.  
 
 Generally, global models treat the different parameterizations of the model “physics” as 
unidimensional problems along the vertical resolution, without explicit interactions between 
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neighboring columns. This approach is justified by the extreme asymmetry between the vertical 
and horizontal resolutions in global models and significantly reduces the computational cost. In 
high-resolution mesoscale models, the approach may be questionable. 
 
 

2.1.1.4  Standards of Operation 
 
 Global NWP models are operated twice or four times each day by a small number of 
large weather services, including NCEP, ECMWF, the U.S. Navy, and a few large national 
weather services, such as the ones in the UK, Germany, France, Japan, Brazil, and Russia. The 
main forecasts start at 00 and 12 UTC (Universal Time Coordinated, or GMT), corresponding to 
the world radiosonde launching — the only 3-D direct observation of the atmospheric state. 
Extra forecasts start at 06 and 18 UTC. The NCEP 10-day forecast is freely available for 
download and is widely used by small weather services, universities, and meteorology groups 
around the world. In the last several decades, ECMWF and NCEP have been setting the standard 
for medium-range forecasts, technically defined as forecasts in the range of 3 to 10 days. Both 
centers use a global spectral model with triangular truncature. Currently, the NCEP Global 
Forecast System (GFS) model (Kanamitsu 1989 [27]) is a T362L64 model, corresponding to a 
horizontal resolution of about 35 kilometers (km), with 64 unequally spaced vertical levels. The 
ECMWF Integrated Forecast System (IFS) (Simmons et al. 1989 [28]) runs at T799L91, 
corresponding to about 25 km of horizontal resolution, with 91 unequally spaced vertical levels. 
Both NCEP and ECMWF run parallel to the higher-resolution global model, an ensemble of 
about 50 lower-resolution (e.g., T159L61, with around 100 km of horizontal resolution) 
simulations with perturbed initial conditions and, in the case of ECMWF, with perturbed physics 
(Molteni et al. 1996 [29]). These ensembles are used to assess the predictability of the 
atmospheric system and have been successfully used to assign an objective degree of uncertainty 
to individual forecasts. 
 
 
2.1.2  Regional/Mesoscale Models 
 
 Limited area models were initially developed for research of mesoscale atmospheric 
processes (i.e., processes with horizontal scales between 1 and a few hundred kilometers). This 
scale is relevant for many local weather phenomena, from sea breezes to mountain flows and 
thunderstorms. Some of these models are limited-area versions of global primitive equation 
models, sharing many of their characteristics, while others were specifically developed for high-
resolution studies.  
 
 In the United States, NCEP used until recently the hydrostatic ETA model 
(Mesinger et al. 1988 [30]; Black 1994 [31]), at a horizontal resolution of about 10 km. In 
Europe, the HIRLAM model (Källén 1996 [32]) and ALADIN (Bubnova et al. 1995 [33]), also 
primitive equation models, are still in operational use by different meteorological services at 
comparable resolutions.  
 
 A number of other models, initially developed for research by different university groups, 
have turned into viable weather forecast models since global forecasts became widely available 
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in real time. These models include the MM5 model (Anthes and Warner 1978 [34]; Dudhia 1993 
[35]; Grell and Stauffer 1994 [36]), initially developed at Pennsylvania State University and later 
adopted by the National Center of Atmospheric Research (NCAR) as a community model and 
made freely available for download. Consequently, MM5 rapidly turned into the most widely 
used, limited-area forecast model, being run by many small weather services and university 
groups worldwide. The relative simplicity of operation of MM5 in the Linux operating system — 
particularly the fact that the offered files include all that is needed to set up a forecast domain 
anywhere in the world — have turned MM5 into a popular choice for small research and 
operation groups. 
 
 In recent years, the MM5 development process has stopped, and NCAR, together with 
NCEP and many of the more relevant American-based atmospheric groups, launched a new 
limited-area model, the Weather Research and Forecasting Model (WRF), also freely available 
for download. WRF (Skamarock et al. 2005 [26]) is a new-generation, mesoscale model that was 
specifically designed for the new computing platforms, taking recent and current meteorological 
research into account, while carrying many of the products that were part of MM5. WRF has two 
basic versions (NCAR and NCEP “flavors”) and it includes many option switches that provide 
access to optional parameterizations and numerical schemes. 
 
 Other mesoscale models with a wide user base include: the Regional Atmospheric 
Modeling System (RAMS) model (Pielke et al. 1992 [37]), the U.S. Navy model COAMPS 
(Hodur 1993 [38]), the Météo-France research model MesoNH (Lafore et al. 1998 [39]), and the 
new European model, AROME. All these models share a feature with MM5 and WRF, namely, 
the fact that they use a nonhydrostatic equation set. Moreover, despite the fact that they have 
many differences in the details of their “physics” and numerics, they have achieved excellent 
results in the simulation of mesoscale flows. Some of those models (e.g., WRF and MesoNH) 
have also been successfully used for microscale simulations as Large Eddy Simulation Models, 
at horizontal resolutions of 100 meters or smaller. 
 
 

2.1.2.1  Regional Forecasts as Mixed Boundary/Initial Condition Problem 
 
 Unlike global models, limited-area models cannot work on their own. They always need 
to be forced by boundary conditions at the limits of their domains, which can only be given by 
observations (in hindcast mode) or by global forecasts (in forecast mode). The model’s initial 
state must also be specified, either from interpolated observations or from an interpolation from 
the instantaneous field of a global model.  
 
 Most limited-area models include a simplified data assimilation code that performs the 
interpolation of the initial-state fields given to the model grid. The models may also assimilate 
time series of point observations by using simple “nudge” techniques. Some models, namely 
MM5 and WRF, even include optional sophisticated data assimilation methods, akin to 4D-VAR 
techniques with adjoint models. However, those components are still mostly used for research. 
Crook and Sun (2004) [40] used a model developed by Sun et al. (1991) [41] to test the 
capabilities of very short time forecasts (i.e., of up to 1 hr) of low-level wind with a sophisticated 
4D-VAR data assimilation system in a case study of the Sydney 2000 Forecast Demonstration 
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Project. It included a 10-min. analysis, in hindcast mode, made with a special surface mesonet, 
two Doppler radars, and a boundary layer profile. Crook and Sun concluded that there was a 
possibility of improvement over persistence in case studies with strong gust fronts, but, on the 
other hand, results were less promising for a slow-moving, sea-breeze front. It is important to 
highlight, however, that the atmospheric model employed a dry boundary layer structure, which 
is not representative of what one would expect in a regional NWP. 
 
 

2.1.2.2  General Formulation of Regional NWP Models 
 
 All limited-area NWP models use terrain-following coordinates, mostly in a pressure-
based system, although there are models that use scaled geometric height (e.g., MesoNH). Most 
of the models are grid point models that use a variety of finite difference schemes, although 
some older hydrostatic models use spectral codes (e.g., HIRLAM) borrowed from global NWPs. 
Most regional NWP models use nested grids, with a lower-resolution grid covering the full 
domain and successive higher-resolution grids covering smaller and smaller fractions of that 
domain. Nested grids allow for very high resolution in a small domain, with a progressive 
transition at intermediate resolutions until the low resolution of the global NWP is met at the 
boundaries. This design is very efficient for studying mesoscale flows. The interaction between 
nested grids may be one-way (with the large scales forcing the small scales) or two-way. 
Because the time step scales linearly with resolution, most of the computing effort is generally 
associated with the computation of the inner (higher-resolution) grid. 
 
 Some regional NWPs have many optional switches, thus allowing somewhat different 
models to be set up for each resolution. 
 
 

2.1.2.3  Domain, Resolution, and Range of Regional NWP Models’ Standards of 
Operation 

 
 Domain and resolution of regional NWPs is largely controlled by computer resources. 
Some of the codes (e.g., MM5, WRF) may even run globally. Hydrostatic NWPs have been 
designed for horizontal resolutions around 10 km, although they may be used for slightly higher 
resolutions (e.g., 5 km). On the other hand, nonhydrostatic NWPs should be used for even higher 
resolutions. Technically, the hydrostatic approximation requires the aspect ratio of the studied 
atmospheric process to be small (i.e., that its horizontal scale is much larger than its vertical 
scale), a condition not generally fulfilled by mesoscale flows, notably by convective systems or 
by many internal waves.  
 
 While the dynamic core of nonhydrostatic NWPs is applicable to all mesoscale flows 
and, in some cases, even to the larger-scale microscale processes, most physical 
parameterizations have been designed for horizontal scales above a few kilometers, and thus they 
may be invalid at a higher resolution. As a result, 1-km simulations of unstable boundary layer 
flow may be challenging because even state-of-the-art models may respond to strong (but 
realistic) surface heating with spurious grid-scale convection, because of the insufficient 
response of their subgrid-scale turbulence scheme at that resolution. The same model may 
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achieve excellent results at 5 km and then at 250 m, with poor performance at intermediate 
resolutions. 
 
 At subkilometric resolutions, some parameterizations (e.g., radiation, cloud 
microphysics) may require expensive 3-D computations not generally available. However, for at 
least some processes, such as topographically forced flows, the models seem to respond well at 
those high resolutions (Zhong and Fast 2003) [42]. 
 
 A number of studies have looked at the value of high resolution in weather forecasts for 
different applications. Doyle et al. [43] and Doyle and Shapiro [44],[45] used the COAMPS 
model to simulate severe winds in topographically complex regions in coastal California and 
Norway. They concluded that in order to achieve a good representation of downslope 
windstorms and other topographic effects, horizontal resolutions around 3–5 km were necessary. 
Cairns and Corey (2003) [46] found similar results in windstorm simulations in the mountains of 
Western Nevada, obtaining good results in 3-km-resolution MM5 simulations in conditions that 
were poorly forecasted by NCEP’s operational (lower-resolution and hydrostatic) ETA model. 
On the other hand, Colle et al. (2003) [47] concluded, on the basis of two years of continuous 
forecasts with the operational ETA and MM5 with a 36-km grid covering the eastern two-thirds 
of the United States and nested grids down to 4 km in the East coast (around southern New 
England), for improved results at 12 km (the intermediate MM5 grid) but little impact of a 
further increase in resolution. Nevertheless, an increase in resolution did not cause a significant 
impact. However, as will be discussed later, the use of higher-resolution grids requires changes 
in the data evaluation process, and, in fact, many new results indicate that an increased resolution 
can lead to some benefits.   
 
 

2.1.2.4  Some Issues in Regional Modeling 
 
 The prospects of mesoscale weather forecasts, and indeed of all high-resolution forecasts, 
were considered unpromising for some time, as a consequence of the idea that smaller scales are 
generally associated with reduced predictability. Furthermore, the initialization of a high-
resolution model seemed to require unrealistically dense observation networks. While both 
arguments have merit, practical results have generally exceeded those expectations, and model 
resolution has been evolving essentially as fast as computer resources have allowed, registering 
net gains in model scores.  
 
 The reason why mesoscale forecasts have exceeded expectations may be related to the 
fact that some mesoscale circulations are somewhat strictly controlled by “external factors” and 
are not strongly affected by predictability issues. One example is orographic flow, largely 
controlled by terrain geometry, a permanent and potentially very well represented constraint. A 
large number of case studies by different authors, reviewed by Mass et al. [48], looked at 
mesoscale model performance in the forecast of significant weather events (precipitation and 
wind, mainly), concluding in favor of high-resolution simulations in the representation of many 
aspects of local weather. However, those studies also indicated that traditional scores of high-
resolution simulations may be poor, even when an expert assessment indicates that there has 
been an improvement in the quality of the simulation. 
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 Zhong and Fast [42] looked at high-resolution simulations of thermally driven valley 
circulations, which were observed in a field campaign in the Salt Lake Valley by comparing 
three mesoscale models — MM5, RAMS, and ETA — with some simulations at resolutions 
below 1 km. Overall, results indicated that while the two higher-resolution models, MM5 and 
RAMS, tended to achieve better results, their errors had many similarities with those registered 
in ETA, in spite of their differences in design and developing histories. Indeed, their errors could 
be consistently attributed to common inaccuracies in the physical parameterizations of the long 
wave radiation and turbulent mixing, leading to a low troposphere cold bias and wrong boundary 
layer depths. Hanna and Yang [49] presented another model intercomparison experiment, using 
the MM5, RAMS, COAMPS, and OMEGA (Bacon et al. 2000) [50]. The aim was to carry out a 
set of 72-hr forecasts in different locations with a focus on model evaluation for atmospheric 
dispersion studies. That study concluded that there were systematic problems in the 
representation of subgrid-scale surface properties and in boundary layer turbulent fluxes, which 
led to large biases in boundary layer height and in low-level wind fields. They found results to 
depend on the vertical resolution model, registering better results when the vertical grid had a 
level at the anemometer height of 10 m. The previously mentioned study of Colle et al. [47] also 
found systematic errors in low-level temperature with impacts on (thermally driven) breeze 
circulations. 
 
 In a very recent paper, Storm et al. (2009) [51] studied the performance of the WRF 
model in the forecast of low-level jets (LLJs) in the U.S. plains, a common nighttime feature of 
the atmospheric flow that may lead to increased mean winds in the low troposphere, somewhere 
between 100 and 1,000 m and occasionally within reach of wind turbines. This study also found 
mixing results on NWP performance, with hints of a good representation of the essential features 
of the jets, indicating that the important driving processes are indeed considered by the model. 
However, there were some errors in the vertical location of the jet and in its intensity, probably 
due to the known inaccuracies of boundary parameterization in stable conditions. For all WRF 
configurations, Storm et al. found out that there is a tendency to underestimate the wind speed 
maximum and overestimate its vertical location, a result that could be caused by excessive 
vertical mixing, a feature that is common to NWP models. These results are consistent with the 
tendency of the models assessed by Hanna and Yang [49] to smooth out sharp low-level 
inversions in the nocturnal boundary layer. Storm et al. concluded that there is room for 
improvement in these parameterizations. LLJs may be an important source of wind energy 
(Sisterson and Frenzen 1978) [52] in some areas, namely on the U.S. plains 
(Mitchell et al. 1995) [53] and on the Californian coast (Burk and Thompson 1996) [54]. 
 
 
2.2  PERFORMANCE OF NWP 
 
 
2.2.1  Evolution of Model Scores 
 
 The performance of global NWPs has been traditionally evaluated in 500 hPa 
geopotential fields, representing balanced (geostrophic) wind in the mid troposphere. Anomaly 
correlations of those fields have increased steadily from the late 1970s, when primitive equations 
of global NWP 10-day forecasts started operationally with less than 60% correlation, going up to 
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about 88% correlation in a 5-day-ahead forecast made with the IFS model by ECMWF [55]. 
There were some similar trends with slightly lower scores observed in other global models, 
namely by the NCEP’s GFS model (with about 83% of anomaly correlation for a 5-day forecast 
in the period 2002–2007; data from Kanamitsu [27]). The previous data indicates that with 
today’s average 5-day forecast, there is a net gain of more than 2 days in forecast predictability 
when compared to the 1980s’ average 3-day forecast. Moreover, today’s average 7-day forecast 
(70% anomaly correlation) is much better than a 5-day forecast from the 1980s (below 60%). 
 
 In the same period, a convergence between the Southern and Northern Hemispheres was 
observed, which corresponds not only to a steady increase of the relevance of satellite data in the 
initialization of NWPs, but also to large improvements in their data assimilation systems.  
 
 
2.2.2  Evaluation of Errors in High-Resolution Models 
 
 Traditional model evaluation scores (mean absolute error, root mean square error, bias, 
correlation) use point error statistics in order to compare observed time series in a meteorological 
station with contemporary time series model grid data interpolated to the same spatial location. 
When a model simulates a particular weather event, there are always errors, not only in its 
intensity, but also in its trajectory or timing. The latter errors are often called phase errors. As 
high-resolution models simulate sharper events, in both space and time, phase errors are more 
penalized in terms of point statistics, leading to what has been called a “double penalty” 
(Hoffman et al. [56]). 
 
 Different authors have tried to set up alternative scoring systems in order to improve the 
analysis of the new high-resolution models. Case et al. (2004) [57] developed a technique for the 
verification of high-resolution forecasts of sea-breezes with the RAMS model (Pielke et al.) [37] 
by using a Contour Map Error to identify sea-breeze transition times and to perform an objective 
comparison of the observed and simulated mean post-sea-breeze wind vectors. Rife et al. [58] 
studied the low-level wind forecasts during the 2002 Salt Lake City Winter Olympics from four 
models — ETA, Rapid Update Cycle-2 (RUC-2), GFS, and MM5, the latter with resolutions 
down to 1.33 km. Overall, they found that the high-resolution models did not lead to better point 
error statistics, although they did produce quite realistic-looking flows, unlike those present in 
lower resolution models. Rife et al. [59] returned to the same problem, proposing a new 
methodology that looks at the statistics of “wind events,” which are defined as changes in the 
wind vector at a given grid point above a threshold. Mass et al. [48] reviewed two continuous 
years of high-resolution MM5 forecasts in the northwest United States and stressed the fact that 
verification statistics are very much user-dependent: some users are very interested in the 
forecast of specific events, for instance, winds above a given threshold, or of time-integrated 
statistics, such as daily accumulated precipitation or daily mean histograms of wind speed. On 
the other hand, some users are more interested in detailed time series. 
 
 Motivated by the need for accurate, low-level wind fields for dispersion studies, Hanna 
and Yang [49] analyzed four mesoscale models in different regions and obtained grid point errors 
in forecasts of around 2.5 m/s in wind speed and on the order of 60º in wind direction. This error 
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level was not very different among the several models and was considered to be high for the 
proposed application. 
 
 Grimit and Mass [60] looked at 6-month MM5 forecasts in the northwestern 
United States driven by an ensemble of boundary conditions from different forecast centers, 
using completely different global models and data assimilation codes. They found significant 
correlations (above 0.6) between forecast spread, an estimate of the forecast uncertainty given by 
the ensemble, and forecast error in wind direction. In the case of very high and very low spreads, 
that correlation would increase to 0.8, thus indicating that mesoscale ensembles can be helpful 
when used in wind forecasts. However, they also found out the least-promising result, which was 
that the ensemble mean did not make better comparisons with observations when compared to 
any individual ensemble member. 
 
 
2.2.3  Critical Processes for Wind Forecast 
 
 Wind forecasts for wind energy applications rely mostly on wind speed and direction at 
50 to 100 m from ground level, at the top of the atmosphere surface layer, and only marginally 
on the forecast of air density. Because of the transfer functions of available generators (power 
curve depicted in Figure 2-1), the conversion of available wind power (which is proportional to 
the cube of the wind’s speed) into actual power varies nonlinearly, with zero output below a 
minimum speed threshold (around 3 m/s), a rapid output in growth until the machine attains its 
nominal power (around 15 m/s), and a constant output above that level until the cut-off speed is 
attained (around 25 m/s).  
 
 

 

Figure 2-1  Wind Turbine Power Curve 
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 Because generators in a given wind park may interact with each other, not only through 
their perturbed wakes but also because of local topographic speed-up or speed-down effects, the 
transfer functions of a park may vary significantly with wind direction. On the other hand, 
because the generators require a significant amount of time to align themselves with the 
prevailing wind, especially when they have to unwind after attaining maximum rotation in one 
direction, wind power is also a function of wind direction variability. Furthermore, the operation 
of wind generators will also be badly affected by small-scale turbulence. 
 
 Because of the nonlinearity of the transfer function, errors in wind speed forecast are 
penalized heterogeneously, when one thinks in terms of actual power. Errors at very low speeds 
are irrelevant since the output is always zero. On the other hand, errors in the flat region of the 
power curve (between 12 and 25 m/s) are also irrelevant as the output is constant, unless one has 
to consider changes in wind direction or in the intensity of turbulence. Errors at low-to-moderate 
speeds (3–12m/s) are highly penalized, as a small error in speed leads to a large error in power. 
Finally, the worst errors are obtained near the cut-off speed (around 25 m/s), when the system 
shifts abruptly from maximum output to zero output (or vice-versa).  
 
 Surface-layer wind speed and wind direction are directly affected by topographic effects 
at different scales, which makes wind forecast resolution highly relevant. Topographic forcing, 
however, depends qualitatively on atmospheric stability (Smith et al. [61]). Surface-layer 
profiles, for a given large-scale forcing, depend on surface characteristics, namely its rugosity 
and static stability. Thus, low-level wind forecasts may be expected to be affected by boundary 
layer parameterizations in an NWP model. On the other hand, low-level wind may be forced by 
heterogeneities in the surface temperature resulting from significant gradients in surface 
properties leading to breeze effects, which points to the relevance of the land-surface model. 
Hong [62] used GIMEX (Green Island Mesoscale Experiment) data in order to evaluate the 
performance of high-resolution (5-km) MM5 simulations over Taiwan. The author found out that 
the model tended to produce sea-breezes that were too strong, and with biased direction, because 
of a consistent warm bias over the island. Large root mean square errors (RMSEs) for wind 
direction (67º) and wind speed (2.5 m/s) were found. The fact that those errors were 
characterized by strong diurnal cycles indicates that they are related to errors in the 
heating/cooling cycle of the surface (i.e., on the model surface thermodynamics). These results 
are clearly consistent with those of Zhong and Fast [42], mentioned earlier, which attributed 
low-level wind errors to inaccuracies in long wave forcing and boundary-layer turbulent mixing. 
Kotroni and Lagouvardos (2004) [63] also found model errors dominated by low-level 
temperature biases in 8- and 2-km resolution forecasts in the urban area of Athens (Greece), with 
strong diurnal cycles in the model errors. 
 
 Hanna and Yang [49] argue that some of the errors found in mesoscale NWPs were 
caused by unrepresented subgrid-scale surface properties, which makes them difficult to 
overcome. However, new land surface models (e.g., Viterbo and Beljaars [64]) developed for 
global models include subgrid-scale surface effects, an approach that can be extended to higher-
resolution models. 
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2.3  OPERATIONAL ASPECTS OF REGIONAL NWP 
 
 Global NWP forecasts are bound to be used only by large meteorological services and 
international organizations, as they need real-time access to proprietary WMO data and satellite 
products and huge state-of-the-art data assimilation systems. Assuming that at least one of those 
global forecasts is publicly available, as is the case today with the NCEP GFS model, regional 
forecasts can be run autonomously by small groups, tailoring the model parameters to their 
specific needs. 
 
 Ready-made and complete NWP systems are widely available, including the older MM5 
and RAMS models and the new WRF model. Other models may be obtained for research 
through an agreement with their owners. All these models will require real-time access to a 
global NWP forecast in order to define initial and boundary conditions, as well as some pre-
processing to generate the model runtime domain and choose some optional parameters. A small 
group of professionals with sufficient knowledge of meteorology, by using the corresponding 
computing literacy, is capable of setting up such a system in just a few weeks. 
 
 
2.3.1  Computational Requirements 
 
 Computational requirements depend mostly on the domain size and resolution of the 
inner grid. For example, the MM5 model runtime for a 72-hr forecast at the University of Lisbon 
on a dual Quad core Xeon central processing unit (CPU) at 2.7 gigahertz (GHz) is 2.5 hr, for an 
inner domain of =88×91×73 grid points and at the resolution of 6 km and 31 vertical levels. For 
the same grid, the WRF model (version 3.0.1) may run in only 75 min. by using an “adaptive” 
time step, a technique that allows the model to run with larger time steps in appropriate 
meteorological conditions. For this setup, both the MM5 and WRF use three nested domains, 
with a larger domain at a 54-km resolution and an intermediate domain at 9 km, all with 
comparable grid sizes. However, the cost of the inner grid is the dominant term in the total 
computing time. 
 
 Generally, computing time increases linearly with the number of levels. At the same time, 
it increases with the number of horizontal grid points and is inversely proportional to the time 
step, which, in turn, is proportional to the horizontal grid spacing. By increasing the number of 
computing cores, it is possible to reduce computer time or to increase the domain sizes. 
However, that increase is generally sublinear: for the previous hardware and setup, doubling the 
number of cores will reduce computing times by about one-third. 
 
 All modern NWPs include the Message Passing Interface (MPI) standard, which makes it 
possible for the code to run parallel in a number of cores/CPUs. Some codes may also include 
OPEN-MP directives, being able to use both parallel technologies at the same time. The 
performance of the code in different computing topologies depends, however, not only on the 
code itself and on domain sizes but also on hardware details, namely, on inter-machine 
communication speeds, cache sizes, etc. 
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 Finally, it should be mentioned that NWP models, especially those developed in research 
environments (as is the case with MM5 and WRF), always have a number of optional switches to 
select different numerical or physical approaches. Those selections may have significant impact 
in the model performance both in terms of computing and in the results themselves. Some 
understanding of the meteorological research literature is required in order to use a certain model 
properly. 
 
 
2.3.2  Cycle of Operations 
 
 The operation of a regional NWP starts with the preparation of the domain files, namely, 
with a selection of the different nested grids to use and the processing of the different terrain data 
(e.g., topography, soil parameters, vegetation, land-sea masks) that are required. This step is only 
performed once for a given domain. In forecast time, it is necessary to download, up to four 
times a day, the latest global forecasts and launch the simulation. The global forecast will include 
a global analysis, incorporating available meteorological data from different sources, and a low-
resolution global forecast, typically with 50- to 100-km horizontal grid sizes, which will define 
the lateral boundary conditions for the regional forecast. If extra local data are available, some 
regional NWPs may assimilate it as a correction to the analysis. At this point, the regional 
forecast may be launched. 
 
 If the regional NWP uses two-way grid nesting, forecasts for the different grids will be 
parallel computed and will be available at the same time. If the inner grid uses one-way grid 
nesting, it is possible to use the intermediate grid results while the inner grid is computed. It is 
easy to perform different domains at the same time with a large number of computer nodes, thus 
significantly decreasing total computing time. 
 
 A regional NWP forecast is completed with some post-processing to prepare automatic 
graphics, tables, and reports. Software for these operations is generally provided by the NWP 
model support team, including the old Grid Analysis and Display System (GRADS) and the new 
NCAR Command Language (NCL) software (from NCAR). 
 
 
2.4  SYNTHESIS OF GLOBAL AND REGIONAL NWP MODELS  
 
 Table 2-1 provides an overview of the most relevant NWP global models, whereas Table 
2-2 provides an overview of the most relevant NWP regional models. 
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Table 2-1  NWP Global Models 

 
Global Model 

 
Developed by 

 
Global Forecast System (GFS) 
(http://www.emc.ncep.noaa.gov/modelinfo/) 
 

 
National Oceanic and Atmospheric Administration 
(NOAA) (U.S.A.) 

The Navy Operational Global 
Atmospheric Prediction System (NOGAPS) 
 

United States Navy (USN) (U.S.A.) 

Global Environmental Multiscale Model (GEM) 
(http://collaboration.cmc.ec.gc.ca/science/rpn/ 
gef_html_public/index.html) 
 

Recherche en Prévision Numérique (RPN), 
Meteorological Research Branch (MRB), and the 
Canadian Meteorological Centre (CMC) 

Integrated Forecast System (IFS) 
(http://www.ecmwf.int/research/) 
 

European Centre for Medium-Range Weather 
Forecasts (based in England) 

Unified Model (UM) 
(http://www.metoffice.gov.uk/science/creating/ 
daysahead/nwp/um.html) 
 

UK Met Office 

German Global Meteorological Model (GME) Deutscher Wetterdienst (DWD), the German 
Weather Service 
 

ARPEGE French Weather Service, Météo-France 
 

Intermediate General Circulation Model (IGCM) 
(http://www.met.rdg.ac.uk/~mike/dyn_models/igcm/) 

University of Reading, Department of Meteorology 
(England) 
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Table 2-2  NWP Regional Models 

 
Regional Model 

 
Developed by 

 
Weather Research and Forecasting Model (WRF) 
(http://www.wrf-model.org/index.php) 

 
A partnership that includes the NOAA, NCAR, 
and more than 150 other organizations and 
universities 
 

Regional Atmospheric Modeling System (RAMS) 
(http://rams.atmos.colostate.edu/) 
 

Colorado State University 

Fifth Generation Penn State/NCAR Mesoscale Model 
(MM5) 
(http://www.mmm.ucar.edu/mm5/) 
 

Mesoscale Prediction Group in the Mesoscale 
and Microscale Meteorology Division, NCAR 

Advanced Region Prediction System (ARPS) 
(http://www.caps.ou.edu/ARPS/) 
 

University of Oklahoma 

High Resolution Limited Area Model (HIRLAM) 
(http://hirlam.org/) 
 

International HIRLAM programme 

Global Environmental Multiscale Limited Area Model 
(GEM-LAM) 
 

Meteorological Service of Canada (MSC) 

Limited Area, dynamical Adaptation, International 
Development (ALADIN)  
(http://www.cnrm.meteo.fr/aladin/) 
 

16 national meteorological services 

COSMO Consortium for Small-Scale Modeling 
(Germany, Switzerland, Italy, Poland, and 
Greece) 
 

Skiron/Eta 
(http://forecast.uoa.gr/forecastnew.php) 

Institute of Accelerating Systems and 
Applications - University of Athens (IASA) 
 

Méso-NH 
(http://mesonh.aero.obs-mip.fr/mesonh/) 

Laboratoire d'Aérologie (UMR 5560 
UPS/CNRS) and CNRM-GAME (URA 1357 
CNRS/Météo-France) 
 

Rapid Update Cycle (RUC) 
(http://ruc.noaa.gov/) 
 

NOAA (U.S.A) 
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3  DEFINITION OF WPF 
 
 
3.1  DEFINITIONS 
 
 The forecasted wind generation made at time instant, t, for a look-ahead time, t+k, is the 
average power, ݌௧ା௞|௧, the wind farm is expected to generate during the considered period of 
time (e.g., 1 hr) if it would operate under an equivalent constant wind. Forecasts are made for a 
time horizon, T, indicating the total length of the forecast period (e.g., 72 hr ahead) in the future. 
The time resolution of the forecasts is denoted by the time step k. The length of the time step 
(number of minutes) is related to the length of the horizon. Usually, for horizons on the order of 
24 to 72 hr, the time step is hourly. In this case, intra-time step (e.g., intra-hourly) variations of 
power and their impact are not considered. This convention also comes from the fact that NWPs 
of wind speed, which are often used as input as explained below, are given as constant values for 
the considered step-ahead. For instance, a forecast of 1.5 megawatts (MW) for the look-ahead 
time, t+8, corresponds to the average generation over 1 hour. Practically, the value for the 
measured power, ݌௧ା௞, is derived from averaging higher-resolution measurements 
(e.g., 15 min.), which can be instantaneous power values or integrated energy values, depending 
on the acquisition system.  
 
 It is important to stress that ̂݌௧ା௞|௧ is called point forecast (or spot forecast), because it is 
only a single value. Other types of forecasts are currently being made. The probabilistic forecasts 
generate a probability distribution forecasted to every look-ahead time. They can be represented 
through density or percentile forecasts, which will be discussed in Chapter 5.  
 
 
3.2  TIME HORIZONS 
 
 A forecasting system is characterized by its time horizon, which is the future time period 
for which the wind generation will be predicted (e.g., the next day). In other power system 
forecasting problems, such as load forecasting, the forecasting system is characterized according 
to its time horizon — very short term, short term, medium term, or long term. 
 
 In the WPF problem, time frontiers that separate the different time horizons are not 
unanimously defined because several authors have proposed different frontiers for each time 
horizon category. Generally, the WPF can be separated into three categories: 
 

• Very short term. The time horizon range is a few hours, but there is no 
unanimity for the number of hours. A limit value of 4 hr for this time horizon 
is proposed in [11], and in [65], the value is 9 hr. The application of this time 
horizon WPF for the wind farm owner depends on the market rules; for 
example, these forecasts can be useful for trading in intraday markets. For the 
SO, the usefulness of these forecasts is related to the ancillary services 
management of the power system, as well as for UC and ED.  
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• Short term. The time horizon ranges from the very-short–term limit up to 
48 or 72 hr. Much of the work is only with time horizons of 48 hr and 
sometimes only for 36 hr. This time horizon is mainly interesting for trading 
in the day-ahed market. For example, in the Iberian Electricity Market 
(MIBEL4) (daily market), the electric energy sale bids for the next day must 
be presented before 10:00 a.m., and, therefore, a 38-hr time horizon covers the 
entire following day. In other countries, the period for presenting offers is 
different (e.g., in the United States, it ranges from 5:00 am to 12:00 noon), so 
the number of hours in the time horizon can also diverge. These forecasts can 
also be used for maintenance scheduling, particularly when the time horizon is 
72 hr. 

 
• Medium term. The time horizon ranges from the short-term limit to a limit of 

7 days. As the time horizon increases, so do the forecast errors. These 
forecasts can be used as inputs in the UC of the conventional generation 
(e.g., coal units), as well as in the maintenance planning of the conventional 
plants. At the same time, when using these forecasts as inputs, it is possible to 
plan the maintenance scheduling of power system lines and wind farms. This 
time horizon (between 3 to 7 days) can only be forecasted in operational mode 
by using NWP solely from large centers, such as the European Center for 
Medium Range Weather Forecasting (ECMWF) or the National Centre for 
Environmental Prediction (NCEP). 

 
 Presently, due to the economic value of forecasting, most of the commercial and research 
forecast systems are used for time horizons ranging from 36 to 72 hr ahead. 
 
 
3.3  REFERENCE MODELS 
 
 Persistence wind or power forecasting assumes that the wind (speed and direction) or 
power at a certain future time will be the same as it is when the forecast is made, which can be 
formulated as ̂݌௧ା௞|௧ ൌ  .௧݌
 
 At an operational level, one has to use the most recently available measurements of wind 
speed or power as they are provided by the supervisory control and data acquisition (SCADA) 
system. Persistence is obviously a very simple method and is mentioned here since it is used as a 
reference to evaluate the performance of advanced methods. An advanced method is worth 
implementing if it outperforms persistence. Wind, however, is somehow persistent in nature. 
Persistence is a difficult method to beat, especially on the short-term (1–6 hr). 
 
 In [65], a new reference model for WPF is described. The proposed reference model 
combines the persistence and the mean, where the weight is a function of the correlation between 
pt and pt+k. The relationship can be formulated as: 

                                                 
4 http://www.omip.pt/precos_volumes.php?id=103. 
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௧ା௞|௧̂݌ ൌ ܽ௞ · ௧݌ ൅ ሺ1 െ ܽ௞ሻ݌ҧ , 
 

where pt is the last measure of the wind generation, p is the estimated mean of the generation 
given by ݌ഥ ൌ ଵ

ே
∑ ௧݌

ே
௧ୀଵ  , and ak is the correlation coefficient between pt and pt+k. The main 

disadvantage of this method is that the ak coefficients have to be estimated or fixed by using 
some considerations or assumptions. The authors stated that if the forecast time horizon is 
greater than 3 hr, then the new reference model should be used instead of persistence.  
 
 
3.4  VERY SHORT–TERM FORECASTING 
 
 The very short-term forecasting approach consists of statistical models based on the time 
series approach, such as the Kalman Filters, Auto-Regressive Moving Average (ARMA), Auto-
Regressive with Exogenous Input (ARX), and Box-Jenkins forecasting methods. These types of 
models only take as inputs past values from the forecasted variable (e.g., wind speed, wind 
generation). At the same time, they can also use other explanatory variables (e.g., wind direction, 
temperature), which can improve the forecast error. Since these methods are merely based on 
past production data, they only outperform the persistence model (reference model) for forecast 
horizons of between 3 and 6 hr. The maximum improvement over the persistence for this short 
time horizon is in the range of 15% to 20% [67]. For time horizons greater than 3–6 hr, NWPs 
should be used as inputs. 
 
 From the statistical point of view, these models can be called univariate/multivariate 
models. The univariate model only considers past values of wind power generation p. 
 
 The univariate model can be expressed as ̂݌௧ା௞|௧ ൌ ݂ሺ݌௧, ,௧ିଵ݌ ڮ , ௧ି௡ሻ݌ ൅ ݁௧, where et is 
white noise and f is a generic function that can be linear or nonlinear. The multivariate models 
not only use past values of that variable, but also past or present values of other variables. These 
past values (e.g., on-site meteorological data, active generation) are measured by the wind farm’s 
SCADA system. The multivariate model can be expressed as 
௧ା௞|௧̂݌ ൌ ݂ሺ݌௧, ,௧ିଵ݌ ڮ , ,௧ି௡݌ ,௧ݔ ,௧ିଵݔ ,௧ିଶݔ ڮ , ௧ି௡ሻݔ ൅ ݁௧, which is a function of past values of p 
and a set of past values of the explanatory variables x. The structure of the model for very short-
term forecasting is depicted in Figure 3-1.  
 
 Two possible forecasting schemes can be used to forecast a complete time horizon (also 
known as a multi-look-ahead forecast). One scheme consists of training, for each look-ahead 
time, a model to forecast the corresponding load-ahead instant. This implies that 48 models are 
trained for 48 look-ahead instants. Another scheme includes training one model only and using it 
in an iterative approach. This approach involves feeding the first look-ahead forecast back to 
replace the lagged value used as input in order to produce the next look-ahead forecast, and the 
process is repeated until the last time instant is reached. The advantage with this last solution is 
that it is only necessary to train one model. However, the cumulative error from one time step to 
the other increases the global forecast error. 
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Figure 3-1  Very-Short–Term Forecasting Structure (adapted from [67]) 
 
 
 The alternative to using these models depends on the purpose of the forecasts, and so a 
trade-off between NWP costs and the utility of the forecast should be measured. As an example, 
if the WPFs are inputs to a unit commitment or dispatch algorithm for horizons ranging from 
10 min. to 1 hr, the use of very-short forecasts is enough and no additional costs with NWP are 
necessary. 
 
 
3.5  WPF WITH NUMERICAL WEATHER PREDICTION 
 
 The current majority of short-term WPF approaches require meteorological predictions as 
inputs to forecast for horizons ranging from 6 to 72 hr. The main feature that distinguishes the 
approaches has to do with the way predictions of meteorological variables are converted to 
predictions of wind power generation through the power curve. 
 
 The advanced forecasting methods are generally divided into two main groups. The first 
group is called the physical approach, and it focuses on the description of the wind flow around 
and inside the wind farm, in addition to using the manufacturer’s power curve in order to 
propose an estimation of the wind power output. The second group is called the statistical 
approach, and it consists of emulating the relation between meteorological predictions, historical 
measurements, and generation output through statistical models whose parameters have to be 
estimated from data without taking any physical phenomena into account. There are some WPF 
systems that combine the two approaches in order to join the advantages of both approaches and 
thus improve the forecasts. 
 
 The state-of-the art of these models can be found in numerous publications, such as  
[67]–[72]. 
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3.5.1  Physical Approach 
 
 The NWP forecasts are provided by the global model to several nodes of grid covering an 
area. For a more detailed characterization of the weather variables in the wind farm, an 
extrapolation of the forecasts is needed. The physical approach in [73] and [74] consists of 
several submodels, which altogether deliver the translation from the wind forecast at a certain 
grid point and model level, to power forecast at the considered site and at turbine hub height. 
Every submodel contains the mathematical description of the physical processes relevant to the 
translation.  
 
 The two main steps are downscaling and conversion to power, as depicted in Figure 3-2 
and Figure 3-3. 
 
 

 

Figure 3-2  Physical Approach Structure (adapted from [67]) 
 
 



 

26 

 

Figure 3-3  Main Steps of the Physical Approach 
 
 
 The downscaling step scales the wind speed and direction to the turbine hub’s height. The 
first step of the downscaling consists of finding the best-performing NWP level (often the wind 
speed at 10 m or at one of the lowest models or pressure levels). The main idea is to refine the 
NWPs by using physical considerations about the terrain, such as the roughness, orography, and 
obstacles, and by modeling the local wind profile, possibly taking atmospheric stability into 
account. The two main alternatives to do so are as follows:  
 

a) Combine the modeling of the wind profile (with a logarithmic assumption) and the 
geostrophic drag law5 in order to obtain surface winds [73]; 

 

b) Use a CFD (Computational Fluid Dynamics) code that enables an accurate computation 
of the wind field that the farm will see, considering a full description of the terrain [75]. 
After this step, a prediction of the local wind regime is available. 

                                                 
ܩ 5 ൌ ௨כ

௞
ටቂ݈݊ ቀ ௨כ

௙೥೚
ቁ െ ቃܣ

ଶ
൅  ଶ, where G is the geostrophic wind, u* is the friction velocity, k isthe Von Kármánܤ

constant, f is the Coriolis parameter, and z0 is the aerodynamic roughness length. 
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The required input for the downscaling step is a detailed description of the wind farm area, such 
as wind farm layout, roughness, orography, and other descriptors. 
 
 The conversion-to-power step consists of converting the wind speed to power by using a 
power curve. The use of the manufacturers’ power curve is the easiest approach, although newer 
research from a number of groups has shown that it is advantageous to estimate the power curve 
from the forecasted wind speed and direction and measured power [76]. 
 
 In order to account for systematic forecasting errors that may be attributable to the NWP 
model or to their modeling approach, physical modelers often incorporate Model Output 
Statistics (MOS) [77] for post-processing power predictions. For an NWP model, statistical 
relations between model-forecast variables and observed weather variables are either used for 
correction of model-forecast variables or for the prediction of variables not explicitly forecast by 
the model. They have often taken the form of multilinear regression equations derived by 
screening potential model-forecast variables as predictors. The method produces forecasts of 
weather variables that, to some extent, account for the random and systematic errors in the 
numerical weather prediction model. The main disadvantage with this model is that it needs 
measured data (on-line or off-line), as well as data of good quality. 
 
 
3.5.2  Statistical Approach 
 
 An alternative approach, which only consists of one step (direct transformation of the 
input variables into wind generation), is the statistical approach (depicted in Figure 3-4). The 
only performed step is a statistical block. As depicted in Figure 3-5, this block is able to combine 
inputs such as NWPs of the speed, direction, temperature, etc., of various model levels, together 
with on-line measurements, such as wind power, speed, direction, and others. With these models, 
a direct estimation of regional wind power from the input parameters is possible in a single step. 
 
 The statistical block can include one or several statistical linear and nonlinear models of 
different types. Some examples are the so-called “black-box” models, which include most of the 
artificial-intelligence-based models, such as Neural Networks (NNs) and Support Vector 
Machines (SVMs). Other types of models are the “grey-box” models, which learn from 
experience (from a dataset) and for which prior knowledge (such as diurnal variations) can be 
injected. There are also models that can be expressed analytically, such as the Kernel regression. 
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Figure 3-4  Main Steps of the Statistical Approach  
 
 

 

Figure 3-5  Statistical Approach Structure (adapted from [67]) 
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 This extrapolation of NWP forecast to power will be referred to in this document as a 
“wind to power (W2P)” model. 
 
The statistical model can be expressed as:  
 

௧ା௞|௧̂݌ ൌ ݂൫݌௧, ,௧ିଵ݌ ڮ , ,௧ି௡݌ ,௧ݔ ,௧ିଵݔ ,௧ିଶݔ ڮ , ,௧ି௡ݔ ,ො௧ାଵ|௧ݔ ڮ , ො௧ା௞|௧൯ݔ ൅ ݁௧ , 

 
which is a function of past values of p and a set of past values and forecasts of the explanatory 
variables x.   
 
 Statistical models are usually set up by an autoregressive part (see Section 3.4), which is 
used to seize the persistent behavior of the wind, and by a “meteorological” part, which consists 
of the nonlinear transformation of NWP forecasts. The autoregressive part enables significantly 
enhanced forecast accuracy for horizons up to 6–10 hr ahead (e.g., generally, in this period, the 
sole use of NWP forecasts may not be sufficient to outperform persistence). 
 
 Today, the main developments of statistical approaches to wind power prediction focus 
on the use of multiple meteorological forecasts (ensembles) as a combination of input and 
forecast. At the same time, these developments also focus on the optimal use of spatially 
distributed measurement data for the correction of prediction errors (phase errors) or for the 
issuing of warnings on potentially large uncertainty. 
 
 
3.5.3  The Combined Approach 
 
 Recent developments in WPF systems are related to the integration of the two paired 
approaches, the physical and mathematical models [69]. The hybrid model benefits from the high 
accuracy of the time series models in short-time horizons and also from the high levels of 
accuracy of the physical models for horizons between 6 and 72 hours. The physical model also 
allows the spatial resolution of the NWP forecasts to increase, taking the terrain characteristics 
into account, as well as forecasting without SCADA measures. Two types of combinations can 
be used for the hybrid physical-statistical approach: (i) a combination of physical and statistical 
approaches (e.g., Zephyr model [78]); and (ii) a combination of models for the short-term (0 to 
6 hr) and for the medium-term (0 to 48 hr) (e.g., UMPREDICTION project [79]). 
 
 A different approach is the combination of alternative statistical models. One example of 
that is the Spanish Sipreólico [80]. 
 
 The combination is achieved through the use of the horizon as a criterion after the model 
that best suits each horizon is identified off-line or by a selection process based on the recent 
performance of each individual model. The structure of the combining approach is depicted in 
Figure 3-6. 
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Figure 3-6  Main Steps of the Combined Approach  
 
 
3.5.4  Regional Forecasting (Upscaling) 
 
 If one wants to forecast the wind generation of a region or a country, the first choice is to 
forecast the output of each wind farm and then add these predictions. This option can be called 
“brute force” because forecasting the output of each single wind farm in a region/country can be 
very expensive and even prohibitive, as far as data management and computer effort (particularly 
for the statistical approach) are concerned. Also, the data measured by the SCADA (e.g., wind 
generation, wind speed) of all the wind farms, as well descriptions of the wind farms (rated 
power, the power curve of the turbines, etc.), can be of low quality and sometimes even missing. 
For instance, the on-line information measured by the SCADA systems in some countries is not 
available because it is only mandatory to install the system in large wind farms. Moreover, it is 
not possible for an SO to have NWP predictions for all wind farms under its control area because 
that involves high computational effort and costs. 
 
 To overcome this problem, upscaling approaches have been developed to forecast 
regional/national wind generation from a sample of reference wind farms. Furthermore, the 
aggregation of wind farms appears to reduce the forecast error as a result of spatial smoothing 
effects [81]–[83]. 
 
 The intention with upscaling is to extrapolate the total wind-generated power from 
predictions carried out for a number of representative (or reference) wind farms, for which 
NWPs and/or on-line measurements are made accessible by the forecasting system. 
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3.5.4.1  Direct Upscaling  
 
 Direct upscaling is a simple approach that links the production and NWP data available 
for one or more reference wind farms to the regional generation, as depicted in Figure 3-7. The 
upscaling model is designed and trained to provide forecasts for the regional wind power directly 
by using input from these reference wind farms. Thus, it requires the availability of detailed data 
on the total generation in order to estimate the model parameters. This approach is essentially 
based on statistical modeling. The main difficulty with this approach is that the function has to 
be updated if new wind farms are added to the system. 
 
 

3.5.4.2  Cascaded Approach  
 
 The cascaded approach is the one that is mainly used today for upscaling. It considers 
two forecasting stages: first, the generation of the reference wind farms is estimated, and then the 
sum is extrapolated to the total regional/national generation, as depicted in Figure 3-8. 
 
 

 

Figure 3-7  Direct Upscaling Method 
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Figure 3-8  Cascaded Method for m Reference Wind Farms 
 
 

3.5.4.3  Cluster or Subregions Approach  
 
 This approach is based on aggregating wind farms into clusters that contain neighboring 
wind farms or wind farms belonging to the same subregion. A model is developed for each 
cluster or subregion based on input (from NWP and/or SCADA) from the reference wind farms 
in that cluster/subregion. Finally, the sum of the clusters’ generation forecasts provides the total 
forecast for the region. The structure of the approach is depicted in Figure 3-9. 
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Figure 3-9  Cluster Method for n Clusters/Subregions 
 
 
 Another possible approach consists of combining the methodologies mentioned above. 
For example, in [84], a combined approach is developed based on the cascaded and the 
subregion configurations. 
 
 

3.5.4.4  On-line (OL) Persistence for Upscaling Models 
 
 As stated above, persistence is a simple method according to which “the wind production 
in the future will be the same as the production now.” It is typically used to evaluate the 
performance of advanced models. Indeed, investing in the implementation of an advanced 
approach on-line is only worthwhile if the model is capable of beating persistence. 
 
 As far as upscaling is concerned, it is a common practice to consider equivalently that 
persistence means that: “the total wind production in the future will be the same as the total wind 
production now.” It is evident that, based on this definition, persistence cannot be an on-line 
model if data for all wind farms are not available on-line. In this case, it is only worth investing 
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in implementing an advanced model on-line if the model is capable of beating a persistence-like 
method based on on-line data. Such a method, defined as OL-Persistence, can be the sum of the 
production of the representative wind farms with SCADA, scaled to the total wind power (using 
nominal power). OL-Persistence can be defined as [83]: 
 
 

෠ܲ
௧ା௞
௥௘௚ ൌ ൬∑ ௉೔

೙೚ೝ೘೙
೔సభ

∑ ௉ೕ
೙೚ೝ೘ೝ

ೕసభ
൰ · ∑ ௝ܲ

௪௙ሺݐሻ௥
௝ୀଵ  , 

 
where ෠ܲ

௧ା௞
௥௘௚is the regional power forecast for look-ahead k, ௜ܲ

௡௢௥௠
 is the nominal power of the ith 

wind farm in the region, ௝ܲ
௪௙is the measured power of the jth wind farm at time t, n is the total 

number of wind farms in the region, and r refers to the reference wind farms. 
 
 
3.6  EVALUATION OF FORECASTS 
 
 WPFs are characterized by an inherent uncertainty, which means that no available wind 
power prediction can ever be exact. Therefore, it is essential that wind power forecasts are 
properly evaluated, not only to assess the performance of the chosen approaches adequately, but 
also to obtain a deeper understanding of what characterizes the prediction uncertainty. 
 
 Evaluation of the quality of forecasting methods is conducted by comparing wind power 
predictions made at a certain time directly with the actual corresponding observations. Hence, 
the quality of a given forecasting method is assessed through analysis of the deviation between 
the prediction and the truth (or the actual). The actions of determining and quantifying the 
quality of forecasting methods in terms of their statistical performance imply that there will be an 
evaluation of a long series of predictions, so that enough data are analyzed. 
 
 In this section, a framework for evaluating the accuracy of WPF methods is presented. 
Adapted from [85] and [86], it consists of an evaluation protocol to measure and grade their 
accuracy [85]. There is particular focus on the most relevant criteria that are considered for wind 
power predictions. In addition, several evaluation measures are presented in order to provide a 
comprehensive framework for the verification of WPFs. These measures will enable users to 
evaluate and compare different approaches for wind power forecasting and provide them with 
insight into uncertainty characteristics. 
 
 
3.6.1  Error Decomposition of Wind Speed Forecasts 
 
 As far as wind speed forecasts are concerned, vpred and vmeas are the forecasted and the 
measured wind speeds, respectively. The difference or deviation between vpred and vmeas, which is 
called the forecast error, e, will be provided by: 

e = vpred – vmeas 

The root mean square error between the two corresponding time series, rmse, will be calculated 
as the square root of the squared error value:  
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rmse = ඥ݁ଶതതത 

The rmse can be decomposed into three different parts, according to the origin of the forecast 
errors [87]: 

rmse2 = bias2 + sde2 = bias2 + sdbias2 + disp2, 

where: 

bias = ҧ݁,  

sde = σ(e),           

sdbias = σ(vpred) – σ(vmeas),       

disp ൌ ට2ߪ൫ݒ௣௥௘ௗ൯ߪሺݒ௠௘௔௦ሻ൫1 െ   ,   ௣,௠൯ݎ

with rp,m being the cross-correlation coefficient between the two time series and σ(vpred) and 
σ(vmeas) their respective standard deviations. 
 
 The bias translates the difference between the mean values of the predictions and the 
measures series. The standard deviation of the errors expresses the variance around the mean of 
the errors, with two different components: (1) the sdbias, which consists of the difference 
between the standard deviations of vpred and vmeas, translating the contributions of errors 
generated by incorrectly predicted variability, and (2) the dispersion, disp, involving the cross-
correlation coefficient weighted with the standard deviations of both time series. The dispersion 
expresses the contribution of phase errors to the rmse, reflecting global characteristics of the 
wind-speed forecasting system. 
 
 
3.6.2  Performance Evaluation of WPF  
 
 Evaluating a set of forecasts implies that related observations are available. Despite the 
fact that most modern wind farms are equipped with SCADA systems, there may be intervals of 
time during which data may not have been available. On the other hand, even if data is fully 
available, there is still the possibility that its quality is poor. In the latter case, tuning and 
verifying the forecast cannot be carried out successfully, since evaluating forecasts with figures 
that do not correspond to the actual makes drawing relevant conclusions less likely. The analyst 
must therefore decide how to deal with the available dataset by considering its overall quality. 
 
 Evaluating forecasts implies considering several available criteria that need to be 
adequately applied and combined in order to support drawing relevant conclusions. 
 
 

3.6.2.1  Training and Test Dataset 
 
 A useful forecasting method should be capable of providing adequate predictions on new 
and independent test data. This capability is usually known as generalization, and its importance 
in assessing the quality of forecasting methods is crucial because it translates the ability of the 
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method to predict under different circumstances. Therefore, it is very important to evaluate the 
error measures on data that have not been used to build the prediction model or to tune the 
method’s parameters. 
 
 In order to achieve this, the data are usually divided into two different sets, according to 
their time characteristics: (1) the training dataset, and (2) the testing dataset. The training dataset 
is used to build the model, taking into consideration the validation of decisions and/or rules on 
the model’s structure. However, since the training dataset does not provide adequate estimates 
for the prediction errors, it is necessary to use new and independent data — the test dataset. 
Thus, prediction models should be developed and tuned by using the training data and 
disregarding the test data, while the error measures should be based on the test data only. 
However, the test data set can be used for self-adaptive training during the test phase. 
 
 

3.6.2.2  Standard Error Measures 
 
 As far as wind power forecasting is concerned, the prediction error observed at a given 
time t+k for a prediction made at time origin t, et+k|t, is defined as the difference between the 
value of wind power that is effectively measured at t+k, Pt+k, and the value of wind power at t+k 
that was originally predicted at t, ෠ܲ௧ା௞|௧: 
 

et+k|t = Pt+k – ෠ܲ௧ା௞|௧ , 

where: 
 
et+k|t is the error corresponding to time t+k for the prediction made at time t, 
 
Pt+k is the measured power at time t+k, 
 
෠ܲ௧ା௞|௧ is the power forecast for time t+k made at time t. 
 
 It is often convenient to use the normalized prediction error e, which can be obtained by 
dividing the prediction error by the installed capacity, as follows: 
 

݁௧ା௞|௧ ൌ ௘೟శೖ|೟

௉೔೙ೞ೟
ൌ ଵ

௉೔೙ೞ೟
ൣ ௧ܲା௞ െ ෠ܲ௧ା௞|௧൧ , 

 

where Pinst is the wind farm installed capacity. The usefulness of normalizing prediction errors 
creates the possibility of obtaining results that can be compared from one wind farm to another, 
regardless of their rated capacity. This produces results that do not depend on wind farm sizes. 
 
 Any prediction error can be decomposed into two components: a systematic error and a 
random error. Ideally, in a perfect model, the systematic error should be equal to zero, while the 
random part should be a sequence of independent random errors that can be modeled using a 
zero mean Gaussian distribution. For practical purposes, however, consecutive forecasting errors 
are often correlated and may not be normally distributed. 
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