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Abstract −  This paper reports new results in adopting 
entropy concepts to the training of mappers such as neural 
networks to perform wind power prediction as a function of wind 
characteristics (mainly speed and direction) in wind parks 
connected to a power grid. Renyi’s Entropy is combined with a 
Parzen Windows estimation of the error pdf to form the basis of 
three criteria (MEE, MCC and MEEF) under which neural 
networks are trained. The results are favourably compared with 
the traditional minimum square error (MSE) criterion. Real case 
examples for two distinct wind parks are presented.  

Index Terms—Wind power forecasting, neural networks, 
correntropy, entropy, Parzen windows. 

I.  INTRODUCTION 
HE demand for more accurate short term wind power 
forecasting models has led to solid and impressive 

development in recent years. Two basic requirements are 
behind this drive: security of operation and cost. 

It is at present consensual in the scientific community that 
3-day-ahead wind power prediction requires some form of a 
two-step approach: a meteorological meso-scale model to 
predict general characteristics of wind speed and direction at a 
given geographical location and a local model that may 
transform wind speed predictions into wind power generation 
of a wind farm. 

However, it is surprising that little attention has been given 
so far to the requirements behind the wind power forecasting 
exercise. Instead, most research activity has been conducted 
under what we may call the “signal processing paradigm”, 
where the sole concern is to try to generate a prediction that 
matches the actual signal. This paradigm is mostly concerned 
with minimizing the prediction error. However, not much 
discussion has been witnessed on the nature and consequences 
of the errors. 

The short-term forecasting techniques use models that try 
to map a function linking wind to power whose analytic form 
is unknown. These models depend on internal parameters that 
have to be tuned in a supervised training mode and there has 
been a generalized adoption of a criterion for measuring the 
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performance quality in terms of the MSE (Minimum Square 
Error) of the error distribution. 

This criterion is only an optimal choice if the error 
distribution is Gaussian. The reason is that MSE is equivalent 
to minimizing the variance of the error distribution. Gaussian 
distributions are the only ones that contain all information in 
their first two moments (linked with mean and variance); all 
other cumulants are zero. On the contrary, other distributions 
have meaningful skewness, kurtosis and other indices related 
with higher moments; therefore, mean and variance do not 
represent all information contained in the distribution. 

It is a fact recognized by researchers that wind predictions, 
namely coming from the meso-scale meteorological models, 
exhibit errors that are not Gaussian in nature. If one considers 
that a wind farm also introduces a non-linear input-output 
relation in terms of wind speed/power generated, errors from 
the wind power production model are surely not Gaussian in 
nature – therefore, the adoption of the MSE criterion is 
certainly not the best tool available to build an accurate wind 
forecasting system. 

However, the published material on wind power prediction 
does not seem to take this fact in account and the MSE 
criterion is widely used when it comes to tuning parameters, 
namely when one builds a model around a basic concept of 
neural networks. 

The signal processing community, however, having 
recognized this issue in the generalized problem of training 
mappers, has produced an approach, sometimes called ITL – 
Information Theoretic Learning, which resorts to the concept 
of information content of the error distribution, instead of 
variance. And as Entropy is a concept that can be translated as 
a measure of the information content of a probability density 
function, criteria based on minimizing Entropy (like MEE – 
Minimum Error Entropy) of functions related with entropy 
were devised. 

The rationale behind this approach lies in the fact that an 
entropy evaluation may allow one to extract more information 
from data that just using a variance-based method, because 
entropy takes in account all the moments of a probability 
distribution. Therefore, one may hope in wind power 
prediction to obtain error distributions with higher frequencies 
close to zero, thus approximating a Dirac function, which has 
minimum entropy. 

Furthermore, this approach will be less sensitive to outliers 
and noise, which is a valuable property when building a model 
for the real world, where data are usually contaminated.  

The first works in this direction with real data on wind 
power have given extremely promising results. Paper [1] 
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reports that a Takagi-Sugeno Fuzzy Inference System trained 
under an Entropy criterion originated a better prediction than 
the same system trained under MSE. In [2], one confirms this 
for neural networks and extends the research to other criteria 
related with entropy but that display better computing 
efficiency. 

In this paper we summarize the concepts behind the 
Entropy-based approaches and illustrate with some results 
how one can produce better models, in the signal processing 
sense, by using Entropy instead of the Minimum Square Error 
criterion. But the paper is not limited to this description. Once 
having at hand two distinct methodologies to generate wind 
power predictions, one has paid attention to the consequences 
of the prediction exercise.  

First of all, it is important to recognize that there are 
different users of wind power predictions, the most important 
groups being wind farm owners that sell in the market and 
ISOs that must ensure the security of the system. These groups 
may have conflicting interests. Then, we must realize that 
prediction systems have errors, will always have errors. 
Therefore, at some point one must ask if the nature of the 
errors (translated into their probability density function) is 
neutral to the users or if, on the contrary, users may take 
advantage (and illicit advantage) from the specific nature of 
the error distribution. 

This paper gives some contribution to the discussion of this 
topic, by comparing, in the Spanish (Iberian) market, the 
economic results of adopting either the MSE or an Entropy 
criterion in a prediction system. The real cases analyzed 
demonstrate that, in fact, the choice of a training criterion is 
not neutral and that a choice that may be convenient to wind 
power generators may not be acceptable to ISOs. 

The work reported in this paper is one of the motivations 
behind the project led by ANL – Argonne National 
Laboratory, together with INESC Porto from Portugal, to 
develop a wind power prediction platform that may serve as 
test bed and as benchmarking for other models. 

II.  REMEMBERING THAT WIND POWER PREDICTION ERRORS 
ARE NOT GAUSSIAN 

To build our case, first, we illustrate that errors in wind 
speed predictions coming from meso-scale models are not 
Gaussian. Wind speed predictions 3 days ahead are generated 
from a NWP (numerical weather prediction) model, namely 
the well known MM5 mesoscale model for mean wind speed 
and wind direction, for a reference point in the wind farm (see 
http://www.mmm.ucar.edu/mm5/). 

Figure 1 displays one year of the NWP/MM5 prediction 
errors against real wind speed values measured by a metering 
station at a wind farm in Portugal. It might seem that the NWP 
error could be approximated by a Gaussian distribution, but if 
we apply the Kolmogorov-Smirnov test to the error data then 
the null hypothesis (error with normal distribution) is rejected. 

This distribution will be passed through a non-linear model 
relating wind speed to power output in the wind farm. It is 
now clear that the wind power prediction errors cannot be 
Gaussian. 
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Figure 1 -  MM5 wind speed prediction error for a wind farm in Portugal and 
the normal distribution (curve) with mean of -0.10 and standard deviation of 
2.90 – they do not match. 

 

III.  TRAINING MAPPERS 
A mapper is a term used to designate a Neural Network, a 

Fuzzy Inference System or, in general, any system that 
emulates an input-output transfer function and whose 
performance depends on the tuning of internal weights or 
parameters. 

We can identify in a mapper three basic modules: its 
internal structure, the performance criterion and the 
mechanism of training. Three types of actions can be applied 
in order to condition the training of a mapper (Figure 2) : 

a) in the internal structure, by modifying the weights 
b) in the performance criterion, by selecting an adequate 

measure of performance 
c) in the training mechanism, by choosing an algorithm or 

procedure to close a feedback loop that updates the 
weights as a function of the performance criterion. 

 

 
Figure 2 – Basic arrangement of a mapper identifying its three main modules 

 
The most important aspect dealt with in this paper is the 

performance criterion. The basic idea is the following: if the 
error distribution of the output would become a Dirac function 
(meaning that all errors would be equal), we would have 
reached a predictor whose output would reproduce exactly the 
actual data series – by just adding to the results a bias 
corresponding to the mean of the pdf of the errors, i.e., the 
deviation from zero (see Figure 3). 
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Figure 3 – A mapper producing a systematic error ε for all inputs will display 
a error density function like a Dirac function 

 
But it so happens that the Dirac function has minimum 

Entropy. If the objective of model development is to discover 
weights W that lead to a pdf of errors as much approximated 
as possible to a Dirac function, then we would be minimizing 
the Entropy of the error distribution. The success of ITL is in 
having discovered a cost function representing this objective 
and having set up a manageable procedure to compute the 
solution. 

IV.  ENTROPY AND PARZEN WINDOW PDF ESTIMATION 
The most well known Entropy definition, in Infornation 

Theory, is Shannon’s Entropy. However, its formulation is not 
convenient to build a computing algorithm for training a 
neural network. Instead, the ITL approach used Renyi’s 
definition of entropy. 

Renyi’s entropy [3] of a discrete probability distribution P = 
(p1, p2,…, pn) is defined as 
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Renyi’s entropy is a family of functions HRα depending on a 
real parameter α. When α = 2, we have what is called 
quadratic entropy 
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This definition can be generalized for a continuous random 

variable Y with pdf fY(z): 
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The operational advantage over Shannon’s definition 

becomes apparent: instead of an integral of the logarithm of 
the pdf, we have the logarithm of the integral, a formulation 
much more amenable to be massaged into an algorithm.  

The estimation of the pdf of data from a sample constituted 
by discrete points , i=1,…,N in a M-dimensional 
space, may be done by the Parzen Window method [4]. This 
technique uses a kernel function centered on each point; it 
looks at a point as being locally described by a probability 
density Dirac function, which is replaced or approximated by 
a continuous set whose density is represented by the kernel. If 

a Gaussian kernel is used, the expression of the estimation  

for the real pdf of a set of N points is a summation of 
individual contributions: 
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where G(.,.) is the Gaussian kernel and σ2I is the covariance 
matrix (here assumed with independent and equal variances in 
all dimensions). In each dimension we have 
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It is easy to understand that the “size” of the window, here 
defined by the value of σ, is important in obtaining a smoother 
or more “spiky” estimate for . This  property is used in 
controlling the behaviour and convergence of algorithms. 
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V.  MEE – MINIMUM ENTROPY CRITERION 
Combining Renyi’s entropy with a pdf estimate with Parzen 

windows [5][6] generates a practical formulation – this 
approach was called Information Theoretic Learning. An 
entropy estimator for a discrete set of data points {y} is 

 2
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where, using (4) 
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In this expression we recognize the convolution of Gaussian 
functions, and the integral of two Gaussians with equal 
standard deviations is a Gaussian with twice the standard 
deviation.  Then we have the following result: 
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which allows the practical evaluation of entropy by simply 
calculating the Gaussian function values of the vector 
distances between pairs of samples. V(y) is called the 
information potential (IP) of the data set. 

Optimizing a mapper with minimum output entropy [7] 
becomes the MEE criterion, for Minimum Entropy Error. 

The discovery of weights in a mapper may be done by 
applying a suitable optimization method that will discover the 
weights w that minimize the objective function 
  (9) ( )R2

w
minH e

This can be achieved by the classical back-propagation 
algorithm [7][8] but in [1] we have applied instead an 
evolutionary algorithm to minimize entropy: EPSO, 
Evolutionary Particle Swarm Optimization. The entropy 
concept is independent of the training method and several 
avenues can be explored in order to build efficient algorithms 
to optimize mappers because different objective functions may 
lead to distinct performance in different algorithms. In this 
paper, however, we will use a classic back-propagation 
scheme, adapted to deal with entropy cost functions. 

The problem with MEE is that it is a time-consuming 
method, because of the need to calculate all differences of 
errors in (8), while the MSE only requires the calculation of 
simple errors.  



 

VI.  OTHER ENTROPY CRITERIA - CORRENTROPY 
To address the computation time burden associated with the 

MEE criterion, other information content measures were 
devised. We now summarize some of the most important 
criteria that we have used to train neural networks in the wind 
power prediction problem: 

1. MSE – Minimum Square Error. This is the classical 
criterion that minimizes the variance of the error 
distribution and has the form 
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where is the error of sample i relative to 
the target value Ti. 

i i(T y )ε = −

2. MEE – Minimum Error Entropy. This is the 
fundamental ITL criterion where the minimization of 
the entropy of the error distribution is equivalent to 
maximize the information potential 
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where G is a Gaussian function, in this case with a 
variance given by a value represented by 2σ2. 

3. MCC – Maximum Correntropy. This criterion is based 
on a generalized similarity measure called correntropy 
[9][10] and may be translated by 
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4. MEEF – Minimum Error Entropy with Fiducial Points. 
This criterion [9] intends to anchor the error 
distribution to a zero mean by defining a compromise 
between minimizing entropy and maximizing 
correntropy through a cost function 
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where γ is a weighting constant between 0 and 1. 
 
Among these criteria, Correntropy plays an important role. 

Correntropy is a generalized similarity measure between two 
arbitrary scalar random variables X and Y defined by: 
 ( ) ( )[ ]V X,Y E k X Yσ σ= −  (10) 
where kσ is the kernel function (usually Gaussian). 

Correntropy is directly related to the probability of how 
similar two random variables are in a neighbourhood of the 
joint space defined by the kernel bandwidth, and provides the 
probability density of the event p(X=Y). Using Parzen 
windows, the bandwidth controls the observation window in 
which the similarity is assessed but makes one unable to 
assess similarity in the whole joint space.  

In [10] one may find a discussion on the properties of 
correntropy. It is proved that a measure CIM(X,Y) = k(0)- 

V(X,Y) related with correntropy satisfies all the properties of 
a metric. CIM may be divided in three different regions: when 
the error is close to zero CIM is equivalent to L2 norm; when 
the error grows CIM becomes a L1 norm; when the error is 
very large CIM becomes a L0 norm, the metric saturates and 
becomes very insensitive to large errors. This property shows 
the robustness of CIM and the importance of kernel 
bandwidth. A small kernel size leads to a small Euclidean 
zone while a large kernel size will increase the Euclidean 
region where the metric behaves like the MSE criterion. 

One can see that the MCC criterion implies that one tries to 
maximize the value of the pdf of the errors at ε = 0. If the data 
allows, this tends to transform the error pdf into a Dirac 
function at zero – therefore MCC tends to minimize entropy. 
However, the MCC criterion does not require the calculation 
of the differences in all pairs of errors and therefore the 
computational burden becomes similar to the MSE criterion. 

VII.  ON-LINE SELF-ADAPTIVE MODELS 
The Entropy criteria have been modified to suit an on-line 

self-adaptive strategy for the neural networks to be used in the 
prediction system. The aspiration to have on-line training is 
not new in wind power prediction systems – however, models 
to adequately dealing with data streaming are still a matter for 
research. The need to adapt to new information has been 
readily recognized – but the need to forget learning acquired 
with outdated information is fairly recent. 

The methodology for the online training under the MEE 
criterion requires that the information potential of the error is 
computed with a recursive formula [11]. When a new measure 
arrives, the prediction error of the neural network is computed 
and added to a time window with M errors of previous 
predictions. The information potential of the error is then 
recursive estimated using the following equation 

( ) ( )
k

k 1 k i k 1
i k L \

V 1 V k x x
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= − +

λ
= − λ + −∑  

where λ is a forgetting factor with values between 0 and 1. A 
window with the M most recent errors was also used. The 
recursion of the information potential uses the gradient from 
the previous time step.  

VIII.  COMPARING ITL CRITERIA WITH MSE 
In this section we present results for training of neural 

networks in real wind power forecasting problems, comparing 
the performance of MSE and three ITL inspired criteria 
(MCC, MEE and MEEF). We have trained a feed forward 
MLP neural network with only one hidden layer comprising 7 
neurons, using a hyperbolic tangent activation function. We 
will not describe details of the training, because the purpose is 
to compare results. The inputs of the MLP are NWP 
meteorological forecasted values: mean wind speed values, 
mean wind direction values. Duo to the cyclic character of the 
wind direction, this variable comprised two components, i.e. 
the sine and cosine components.  

To validate the results we have run 25 simulations in each 
study, randomly generating weights in each case. The final 



 

conclusions derive from the average of all simulations. When 
comparing criteria, the same weights were used in all cases. 

The real test cases refer to two wind parks located in 
Portugal in mountain regions, far from each other. Wind park 
A has a rated power of above 20 MW and comprises equal 
wind turbines of under 2 MW each. Wind park B has a rated 
power of above 15 MW and comprises a set of equal older 
turbines of above 0.5 MW and another set of equal turbines of 
about 2 MW. The data collected from the wind parks included 
SCADA registers with mean electric power delivered by the 
wind park into the substation connecting it to the electric 
power network. 

Other model’s input variables include forecasts generated 
from a NWP (numerical weather prediction) model for mean 
wind speed and wind direction, for a reference point in the 
wind park. 

A.  24 hour ahead forecasting 
The first case (Figure 4) compares the pdf of errors 

obtained with MEEF, MCC and MSE in batch-sequential off-
line training for wind farm A for 24 hour ahead prediction. 
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Figure 4 - Comparison of the error pdf generated by NN trained with MEEF 
(dotted), MCC (solid) and MSE (dotted line width) criteria for wind park A 

 
Just by examining the figure, we confirm that the prediction 

errors are not Gaussian. The neural network trained under the 
entropy-related criteria made it possible to obtain a narrower 
pdf (extremely similar in results) than with the variance-based 
criterion MSE. In agreement with the theory, it was possible to 
design a mapper that produces a predictor with a higher 
frequency of errors close to zero. 

Figure 5 shows the forecasted values for the mean 30-
minute electric power for the same wind park obtained with 
three criteria (2 ITL criteria and MSE), when compared to the 
real value registered in the park SCADA. The wind speed 
registered is also shown. It’s clear that the entropy-related 
criteria made a better fit and followed better the SCADA 
measured. In some points the MSE produced small errors, but 
as we see in this figure the models trained with entropy criteria 
produce a larger number of errors close to zero. 
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Figure 5 - Comparison among predictions by three criteria on 2005 May 26, 
27 and 28 for wind park A. The graph also displays the wind speed prediction 
provided by the MM5 model (wind speed scale on the right) 

 

B.  3 day ahead forecasting 
The second case is about 3 day ahead forecasting. The error 

measure adopted to evaluate performance was the NMAE 
(normalized mean absolute error). This error average was 
calculated over all 3-day horizon windows available in the test 
set months.  

The rationale for this choice is two-fold: it is a criterion 
often used by researchers working in wind power forecasting 
[12] and it would not introduce a bias in comparisons, because 
it’s a criterion not used in the calculations. The errors are also 
compared with a classical reference model: persistence, which 
corresponds to admit as forecast the last known value of the 
generation time series. 

In Figure 6 we can see the result for the 3 day ahead 
prediction at a specific date for wind park A, obtained with a 
neural network trained offline. 

It is evident that the entropy-based criteria produced 
smaller average error than the MSE criterion. We can show 
with this example that the results from applying MCC and 
MEEF are virtually identical. Therefore, in practice the MCC 
criterion is the good choice, because it is much less demanding 
in computing effort (comparable to MSE in this respect). 

 

 
 

Figure 6 – NMAE error for 3 day ahead forecasts in specific days for wind 
park A (off-line training). 
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Figure 7 - Wind Park A: NMAE with distinct training criteria 
 

In Figure 7 we can compare, for a specific day, the 3 day 
ahead prediction performance for the MSE criterion with on-
line adaptive training, the MCC criterion for off-line training 
and for on-line adaptive training and the MEEF criterion for 
on-line adaptive training. The figure illustrates for a specific 
case what we have witnessed as a rule: that models that 
undergo self-adaptive on-line training perform better than 
models trained off-line. This is a result of the fact that the data 
streaming of wind speed values exhibits properties of concept 
drift – the underlying probabilistic model that could explain 
wind behavior is changing and therefore an off-line trained 
model eventually diverges from the reality it tries to emulate. 

This case is very interesting because all cases with training 
driven by an entropy-based criterion performed better that the 
neural network trained on-line under the MSE criterion – even 
the off-line MCC criterion was better.  
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Figure 8 – Wind Park B: NMAE with distinct training criteria 
 

In Figure 8 we see the advantage of a self-adaptive on-line 
training model. This case is selected from data form wind park 
B. A new wind generator had been added and the off-line 
trained model did not adapt – so, the MCC criterion with off-
line training displays now clearly a worse result, much worse 
than even the MSE criterion, which has been applied in an 
adaptive on-line training fashion. 
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Figure 9 - Wind Park B: forecasted and measured values of the electric power 
obtained with online and offline training (12-14 November 2005). 
 

In Figure 9 we can evaluate the prediction performance in a 
case in November 2005. The wind power 3 day ahead 
prediction that seems to be a better fit to the actual values later 
measured is the one resulting from the entropy-based criterion. 
One must bear in mind that the prediction curves are strongly 
influenced by the NWP/MM5 wind speed predictions and this 
explains why they seem to be somewhat parallel. 

IX.  COST OF ERRORS 
Both Figure 4 and Figure 9 give evidence to a characteristic 

that we have confirmed in all systems studied: that predictor 
systems trained with Minimum Entropy and the MSE criteria 
display different biases in the forecasting values they generate. 
As a general trend, a system trained with MSE tends to 
produce forecasts that slightly overestimate the actual values 
while the Entropy criteria lead on average to inferior values. In 
Figure 4 this bias is quite evident for the pdf associated with 
the MSE criterion – there is a shift to the right of the pdf peak, 
when compared with the pdf associated with the Entropy 
criteria. 

The fact that predictions are not perfect and that any system 
will produce some distribution of errors is trivial. However, in 
a market system where wind power producers may play, 
prediction errors have a cost or penalty associated with them. 
These costs are very much dependent on the rules of the 
market and no general conclusion can be offered. However, 
one can clearly state that if the penalties are asymmetric then 
an opportunity arises for a player to benefit from using a 
biased model instead of a true fair and neutral model. 

Take the Spanish market (OMEL), for instance. In this 
market, wind power producers offer power in the day ahead 
market and are paid at the market clearing price. Then, if the 
wind generation results above or below their offer, they will 
be subject to a penalty:  
o  If the actual generation is above the offered power, the 

excess in paid at a discounted value. 
o  If the actual generation remains below the offered 

power, a penalty is applied according to the cost of the 
generation the ISO has to purchase to compensate for 
the lack of power. 



 

The following Table shows the annual mean energy prices 
in 2007 and 2008: 

 
2007  2008  

Marginal Price [€/MWh]  40.29 65.49 
Down-regulation price [€/MWh]  8.97  9.10  
Up-regulation price [€/MWh]  -1.98  -2.99  
 
These are very asymmetric cases and this is the general 

rule: the down-regulation price has an absolute value several 
times greater than the up-regulation price.  

We have taken one of the wind farms and simulated its 
participation in the Spanish market, offering the power 
prediction coming from prediction systems trained with MSE 
and with MCC. The following table summarizes the results 
obtained: 

 
simulation  MSE  MCC  
Contracted Energy [GWh]  50.40 35.38 
Surplus [GWh]  16.32 22.45 
Shortage [GWh]  17.64 8.74 
Down-regulation costs [103 €]  137.59 195.47 
Up-regulation costs [103 €] 52.91 26.68 
Total Revenue 1752.46 1720.80

 
The conclusion is unmistakable: a strategy of offering 

power in excess to the real value gives a higher reward that a 
strategy that would have a more neutral attitude and higher 
frequency of errors close to zero. In other words: although the 
Entropy-trained system produces a prediction that is closer to 
the actual power, because of the asymmetry in prices for up 
and down errors, a system trained with MSE could give a 
revenue advantage to the wind power producer. 

However, this gain is made at the loss of the ISO (admitting 
that it trusts the wind power prediction of the wind farm 
owner). Furthermore, because the rewarding strategy or the 
producer leads to a bias or systematic over-estimation of the 
wind power, this is contrary to the interests of the ISO in terms 
of security of the system.  

Therefore, a wind power prediction system that provides 
the maximization of revenue rewards (or minimization of 
penalties) to wind power producers cannot be trusted or 
accepted by ISOs. 

One can even realize that the excess reward paid to wind 
power producers will ultimately be passed to the consumers – 
so, regulators that have the mission to protect the interests of 
the consumers and the fairness of the market will have to 
consider the properties of the error distribution of commercial 
wind power prediction systems. 

X.  CONCLUSIONS 
Wind power prediction for wind parks displays obvious 

non-Gaussian characteristics in the error probability 
distributions and therefore training input-output systems 

(mappers) to perform wind power prediction should move 
away from criteria based on Variance (such as MSE) and 
should instead adopt criteria based on Entropy concepts.  

The application of these concepts to real wind parks in 
Portugal allows one to extract clear conclusions: 
o  Entropy training criteria lead to predictions with a 

higher frequency of errors closer to zero than the 
Minimum Square Error criterion 

o  Self-adaptive models produce better predictions than 
off-line trained models 

o  Off-line Entropy-based criteria are competitive with 
on-line MSE trained systems 

o  On-line self-adaptive training wit Entropy criteria lead 
to the best predictions, as evaluated by the error 
distributions 

o  Entropy training criteria and the MSE exhibit different 
biases on the average value of the predictions they 
produce 

o  In a market with asymmetric prices for up and down 
errors, a neutral prediction system does not provide the 
best revenue to a wind power producer: a bidding 
strategy that over-estimates wind power will be 
preferred 

o  The MSE criterion is not neutral 
o  In such a market, a forecasting system serving the 

purposes of wind power producers is against the 
interest of Independent System Operators 

This paper contributes with evidence from real cases 
supporting the above conclusions. These will be taken in 
account during the development of the project, led by ANL – 
Argonne National Laboratory, in cooperation with INESC 
Porto, that aims at the implementation of new concepts in a 
wind power forecasting platform that may be taken as 
reference by all agents in the power business. 
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