

... for a brighter future

#### Electric Power Market Simulations Using Individuals as Agents



UChicago ► Argonne<sub>uc</sub>

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Guenter Conzelmann Argonne National Laboratory Argonne, IL 60439, USA guenter@anl.gov

#### Market Simulations Allow Us to Explore Market Strategies and Agent Adaptive Behavior

- Practice strategies that we learned through our research of electric power markets
- Examine and discuss the emergent behavior of individual agents and their market strategies
- Compare the behavior of Argonne agents to the observed evolution of the California and New England markets
- Gain insights into the methods that can be used to emulate market strategies of individual agents in the EMCAS model



#### Argonne Staff Act Out the Roles of Individual Agents in a Virtual Electric Power Market

- Demand agent
  - Consume electricity
  - Curtail demand when electricity becomes very expensive
- Generation agents
  - Own and operate virtual power plants
  - Submit power bids to the independent system operator (ISO)
  - Generate electricity to meet loads
  - Strive to maximize profits
- Independent system operator agent
  - Accept and reject generation agents' bids
  - Dispatch operational units according to market rules
  - Post next-day weather and load forecasts
  - Compute and post market clearing prices
  - Post unit outages



#### Information Flow among the Agents is a Critical Feature of the Simulation Process



### Simulation Bulletin Postings Are Very Similar to the Information Found on the California ISO Web Page



#### Argonne Agents Submit Bid Forms to the ISO

**Bid Prices & Quantities** 

#### In EMCAS, Simulated Generation Company Agents Submit Bids

Five \_ Blocks

|     | Unit ID<br>Number | Supply Source | Energy<br>Sales<br>Block ID | Bid Price<br>(\$/MWh) | Incremental<br>Quantity<br>(MWh) | Total<br>Quatity<br>(MWh) | Quantity<br>Remaining<br>(MWh) | Heat Rate<br>(BTU/kWh) | Incremental<br>Heat Rate<br>(BTU/kWh) | Incremental<br>Production<br>Costs (\$/MWh) |
|-----|-------------------|---------------|-----------------------------|-----------------------|----------------------------------|---------------------------|--------------------------------|------------------------|---------------------------------------|---------------------------------------------|
|     | 1                 | Baseload Coal | 1                           | 20                    | 25                               | 25                        | 475                            | 19,077                 | 19,077                                | 33.3                                        |
|     | 1                 | Baseload Coal | 2                           | 21                    | 225                              | 250                       | 250                            | 10,885                 | 9,975                                 | 18.8                                        |
| < │ | 1                 | Baseload Coal | თ                           | 22                    | 125                              | 375                       | 125                            | 10,127                 | 8,611                                 | 16.6                                        |
|     | 1                 | Baseload Coal | 4                           | 23                    | 125                              | 500                       | 0                              | 9,758                  | 8,651                                 | 16.6                                        |
| U   | 1                 | Baseload Coal | 5                           | 90                    | 0                                | 500                       | 0                              | 9,758                  | 0                                     | 0.0                                         |
|     | 2                 | NGCC          | 1                           | 63                    | 75                               | 75                        |                                |                        |                                       |                                             |
|     | 2                 | NGCC          | 2                           | 64                    | 100                              | 175                       | 75                             | 7,986                  | 5,704                                 |                                             |
|     | 2                 | NGCC          | თ                           | 65                    | 50                               | 225                       | 25                             | 7,681                  | 6,612                                 | 37.6                                        |
|     | 2                 | NGCC          | 4                           | 66                    | 25                               | 250                       | 0                              | 7,514                  | 6,012                                 | 34.3                                        |
|     | 2                 | NGCC          | 5                           | 40                    | 0                                | 250                       | 0                              | 7,514                  | 0                                     | 0.0                                         |
|     | 3                 | Gas-Turbine   | 1                           | 70                    | 35                               | 35                        | 40                             | 11,003                 | 11,003                                | 67.0                                        |
|     | 3                 | Gas-Turbine   | 2                           | 85                    | 20                               | 55                        | 20                             | 9,631                  | 7,230                                 | 46.0                                        |
|     | 3                 | Gas-Turbine   | з                           | 100                   | 20                               | 75                        | 0                              | 9,150                  | 7,827                                 | 49.3                                        |
|     | 3                 | Gas-Turbine   | 4                           | 30                    | 0                                | 75                        | 0                              | 9,150                  | 0                                     | 0.0                                         |
|     | 3                 | Gas-Turbine   | 5                           | 30                    | 0                                | 75                        | 0                              | 9,150                  | 0                                     | 0.0                                         |



### Based on Agent Bids, the ISO Determines Market Clearing Prices





# Market Clearing Prices Varied Significantly among the Hours and Days of the Week





#### Agents Adapted Their Strategies Over Time





## This Type of Gaming by Marketers Is Reportedly a Reality in California<sup>1</sup>

- On July 9, 1998, a bid price of reserve power needed by the ISO was reported to be 1 \$/MWh
- Suddenly, the \$1 bid price shot up to \$2500
- The bid price reportedly spiked suddenly to \$5000 where it stayed for 3 hours before dropping back to \$1
- Four days later a bid price rose to \$9999 and it stayed at that level for 4 hours before it dropped to \$0.01 in the next hour
- "All of us saw those numbers and realized ... there was nothing to stop someone from bidding infinity," said Jeffrey Tranen (former ISO staff member)
- It was evident from the first year of the market operation that players (agents) were probing for weak spots

<sup>1</sup>Source: Sacramento Bee May 6, 2001



#### As Reserve Margins in California Shrink, On-peak Prices Rise above Marginal Costs<sup>1</sup>



<sup>1</sup>Source: California's dysfunctional electricity market: policy lessons on market restructuring, Energy Policy, January 2001



### Simulations That Use Individuals as Agents Can Provide Insights into How a Market Will Operate

- Agents learn about the behavior of the virtual market, and some will adapt their strategies to take advantage of the market rules and structure
- Agents can probe the virtual market for flaws
- In the future, market rules must be developed more carefully
- Market structures and rules should be tested through model simulations to help uncover flaws
- The California market might look different today if market designers had been able to perform rigorous market simulations in a virtual world before implementing rules in the real one

